The inverse, [tex]$f^{-1}(x)$[/tex], of [tex]$f(x) = \frac{x+5}{x}$[/tex] can be written as [tex][tex]$\frac{5}{x-1}$[/tex][/tex].

a) Find [tex]$f(2)$[/tex].
b) Find [tex]$f^{-1}(2)$[/tex].



Answer :

Let's find the values step-by-step.

### Part (a): Find [tex]\( f(2) \)[/tex]

Given the function [tex]\( f(x) = \frac{x+5}{x} \)[/tex], we need to find [tex]\( f(2) \)[/tex].

1. Substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = \frac{2 + 5}{2} \][/tex]

2. Perform the arithmetic:
[tex]\[ f(2) = \frac{7}{2} = 3.5 \][/tex]

So, [tex]\( f(2) = 3.5 \)[/tex].

### Part (b): Find [tex]\( f^{-1}(2) \)[/tex]

Given the inverse function [tex]\( f^{-1}(x) = \frac{5}{x-1} \)[/tex], we need to find [tex]\( f^{-1}(2) \)[/tex].

1. Substitute [tex]\( x = 2 \)[/tex] into the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(2) = \frac{5}{2 - 1} \][/tex]

2. Perform the arithmetic:
[tex]\[ f^{-1}(2) = \frac{5}{1} = 5.0 \][/tex]

So, [tex]\( f^{-1}(2) = 5.0 \)[/tex].

### Summary

The results are:
- [tex]\( f(2) = 3.5 \)[/tex]
- [tex]\( f^{-1}(2) = 5.0 \)[/tex]