Certainly! Let's evaluate each term in the sequence step-by-step:
1. First Term:
[tex]\[ 1 \][/tex]
This is already given and does not require any computation.
2. Second Term:
[tex]\[ \frac{3}{7} \][/tex]
Converting this fraction to a decimal, we get:
[tex]\[ \frac{3}{7} \approx 0.42857142857142855 \][/tex]
3. Third Term:
[tex]\[ \frac{8}{3} \][/tex]
Converting this fraction to a decimal, we get:
[tex]\[ \frac{8}{3} \approx 2.6666666666666665 \][/tex]
4. Fourth Term:
[tex]\[ -1 \][/tex]
This value is already given as a whole number and does not require any computation.
Summarizing these results, the sequence is:
[tex]\[ 1, 0.42857142857142855, 2.6666666666666665, -1 \][/tex]
Thus, the given sequence in decimal form is:
[tex]\[ 1, 0.42857142857142855, 2.6666666666666665, -1 \][/tex]