REASONING

5. The steps to simplifying the product [tex]$\left(2 x^3\right)^3$[/tex] to simplest terms are shown below. Write in what justifies each step.

Step 1: [tex]$\left(2 x^3\right)^3=2 x^3 \cdot 2 x^3 \cdot 2 x^3$[/tex]
Justification: [tex]$\qquad$[/tex]

Step 2: [tex]$2 x^3 \cdot 2 x^3 \cdot 2 x^3=2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3$[/tex]
Justification: [tex]$\qquad$[/tex]

Step 3: [tex]$2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3=(2 \cdot 2 \cdot 2) \cdot\left(x^3 \cdot x^3 \cdot x^3\right)$[/tex]
Justification: [tex]$\qquad$[/tex]

Step 4: [tex]$(2 \cdot 2 \cdot 2) \cdot\left(x^3 \cdot x^3 \cdot x^3\right)=8 x^9$[/tex]
Justification: [tex]$\qquad$[/tex]



Answer :

Let's break down the steps to simplifying the product [tex]\((2x^3)^3\)[/tex] and provide the justifications for each step methodically:

Step 1: [tex]\((2 x^3)^3 = 2 x^3 \cdot 2 x^3 \cdot 2 x^3\)[/tex]
Justification: Apply the Power of a Product Property, which states that [tex]\((ab)^n = a^n \cdot b^n\)[/tex]. Here, we are essentially expressing the product as a repeated multiplication.

Step 2: [tex]\(2 x^3 \cdot 2 x^3 \cdot 2 x^3 = 2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3\)[/tex]
Justification: Simplify each term separately. We separate the coefficients and the variables to handle them independently.

Step 3: [tex]\(2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3 = (2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3)\)[/tex]
Justification: Rearrange and group like terms. Group all coefficients together and all the variables together to prepare for further simplification.

Step 4: [tex]\((2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3) = 8 x^9\)[/tex]
Justification: Multiply the exponents together. Simplify the numerical coefficients [tex]\(2 \cdot 2 \cdot 2 = 8\)[/tex] and apply the property of powers [tex]\((x^a \cdot x^b \cdot x^c = x^{a+b+c})\)[/tex] to get [tex]\(x^{3+3+3} = x^9\)[/tex].

Summarizing, the justifications for each step are:
- Apply the Power of a Product Property.
- Simplify each term separately.
- Rearrange and group like terms.
- Multiply the exponents together.

Through these steps and justifications, we have simplified [tex]\((2 x^3)^3\)[/tex] to [tex]\(8 x^9\)[/tex].