For the inverse variation equation [tex]x y = k[/tex], what is the value of [tex]x[/tex] when [tex]y = 4[/tex] and [tex]k = 7[/tex]?

A. [tex]\frac{4}{7}[/tex]
B. [tex]\frac{7}{4}[/tex]
C. 3
D. 28



Answer :

To determine the value of [tex]\( x \)[/tex] for the inverse variation equation [tex]\( x \cdot y = k \)[/tex] when given specific values for [tex]\( y \)[/tex] and [tex]\( k \)[/tex], we can proceed through the following steps:

1. Identify the given values:
We know that [tex]\( y = 4 \)[/tex] and [tex]\( k = 7 \)[/tex].

2. Set up the inverse variation equation:
The equation for inverse variation is
[tex]\[ x \cdot y = k \][/tex]

3. Substitute the known values into the equation:
Plug in [tex]\( y = 4 \)[/tex] and [tex]\( k = 7 \)[/tex] into the equation:
[tex]\[ x \cdot 4 = 7 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], divide both sides of the equation by 4:
[tex]\[ x = \frac{7}{4} \][/tex]

Therefore, the value of [tex]\( x \)[/tex] when [tex]\( y = 4 \)[/tex] and [tex]\( k = 7 \)[/tex] is [tex]\( \frac{7}{4} \)[/tex].

So, the correct answer is:
[tex]\(\boxed{\frac{7}{4}}\)[/tex]