Answer :
To solve the system of equations:
[tex]\[ \begin{cases} 2x = 5y + 4 \\ 3x - 2y = -16 \end{cases} \][/tex]
we can use the method of substitution or elimination. Let's go step by step using substitution in this case.
1. Equation 1: [tex]\(2x = 5y + 4\)[/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{5y + 4}{2} \][/tex]
2. Substitute [tex]\(x\)[/tex] in Equation 2:
[tex]\[ 3 \left( \frac{5y + 4}{2} \right) - 2y = -16 \][/tex]
3. Multiply both sides by 2 to clear the fraction:
[tex]\[ 3(5y + 4) - 4y = -32 \][/tex]
4. Distribute and simplify:
[tex]\[ 15y + 12 - 4y = -32 \][/tex]
[tex]\[ 11y + 12 = -32 \][/tex]
5. Isolate [tex]\(y\)[/tex]:
[tex]\[ 11y = -32 - 12 \][/tex]
[tex]\[ 11y = -44 \][/tex]
[tex]\[ y = \frac{-44}{11} \][/tex]
[tex]\[ y = -4 \][/tex]
6. Substitute [tex]\(y\)[/tex] back into Equation 1 to find [tex]\(x\)[/tex]:
[tex]\[ 2x = 5(-4) + 4 \][/tex]
[tex]\[ 2x = -20 + 4 \][/tex]
[tex]\[ 2x = -16 \][/tex]
[tex]\[ x = \frac{-16}{2} \][/tex]
[tex]\[ x = -8 \][/tex]
Therefore, the solution to the system of equations is [tex]\((-8, -4)\)[/tex].
To determine which option matches our solution:
- [tex]\((-8, -4)\)[/tex]: Yes, this matches our solution.
Thus, the correct answer is [tex]\((-8, -4)\)[/tex], which corresponds to the option 1.
[tex]\[ \begin{cases} 2x = 5y + 4 \\ 3x - 2y = -16 \end{cases} \][/tex]
we can use the method of substitution or elimination. Let's go step by step using substitution in this case.
1. Equation 1: [tex]\(2x = 5y + 4\)[/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{5y + 4}{2} \][/tex]
2. Substitute [tex]\(x\)[/tex] in Equation 2:
[tex]\[ 3 \left( \frac{5y + 4}{2} \right) - 2y = -16 \][/tex]
3. Multiply both sides by 2 to clear the fraction:
[tex]\[ 3(5y + 4) - 4y = -32 \][/tex]
4. Distribute and simplify:
[tex]\[ 15y + 12 - 4y = -32 \][/tex]
[tex]\[ 11y + 12 = -32 \][/tex]
5. Isolate [tex]\(y\)[/tex]:
[tex]\[ 11y = -32 - 12 \][/tex]
[tex]\[ 11y = -44 \][/tex]
[tex]\[ y = \frac{-44}{11} \][/tex]
[tex]\[ y = -4 \][/tex]
6. Substitute [tex]\(y\)[/tex] back into Equation 1 to find [tex]\(x\)[/tex]:
[tex]\[ 2x = 5(-4) + 4 \][/tex]
[tex]\[ 2x = -20 + 4 \][/tex]
[tex]\[ 2x = -16 \][/tex]
[tex]\[ x = \frac{-16}{2} \][/tex]
[tex]\[ x = -8 \][/tex]
Therefore, the solution to the system of equations is [tex]\((-8, -4)\)[/tex].
To determine which option matches our solution:
- [tex]\((-8, -4)\)[/tex]: Yes, this matches our solution.
Thus, the correct answer is [tex]\((-8, -4)\)[/tex], which corresponds to the option 1.