Evaluate [tex]\sin \left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)[/tex] and assume that all angles are in Quadrant I.

A. [tex]\frac{3}{2}[/tex]
B. [tex]\frac{\sqrt{3}}{2}[/tex]
C. [tex]\sqrt{3}[/tex]
D. [tex]\sqrt{2}[/tex]

Please select the best answer from the choices provided:

A
B
C
D



Answer :

To solve the problem of evaluating [tex]\(\sin \left(\sin^{-1} \frac{\sqrt{3}}{2}\right)\)[/tex], let's go through the steps in detail:

1. Understand the inner function:
- The inner function is [tex]\(\sin^{-1} \frac{\sqrt{3}}{2}\)[/tex].
- [tex]\(\sin^{-1} x\)[/tex] (also known as [tex]\(\arcsin\)[/tex] or the inverse sine function) returns an angle whose sine value is [tex]\(x\)[/tex].
- So, [tex]\(\sin^{-1} \frac{\sqrt{3}}{2}\)[/tex] gives an angle [tex]\(\theta\)[/tex] such that [tex]\(\sin \theta = \frac{\sqrt{3}}{2}\)[/tex].

2. Identify the angle:
- Given that all angles are in Quadrant I (where all trigonometric values are positive), we recognize that [tex]\(\theta\)[/tex] must be the angle for which the sine is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- In Quadrant I, [tex]\(\theta = \frac{\pi}{3}\)[/tex] (or 60 degrees) satisfies [tex]\(\sin \theta = \frac{\sqrt{3}}{2}\)[/tex].

3. Apply the outer function:
- Now, we need to evaluate [tex]\(\sin(\theta)\)[/tex] where [tex]\(\theta = \sin^{-1} \frac{\sqrt{3}}{2}\)[/tex].
- Because by definition of [tex]\(\theta\)[/tex], [tex]\(\sin \theta = \frac{\sqrt{3}}{2}\)[/tex].

Therefore,
[tex]\[ \sin \left(\sin^{-1} \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2} \][/tex]

From the given choices:
a. [tex]\(\frac{3}{2}\)[/tex]
b. [tex]\(\sqrt{3}\)[/tex]
c. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
d. [tex]\(\sqrt{2}\)[/tex]

The best answer is:
[tex]\[ \boxed{\frac{\sqrt{3}}{2}} \][/tex]