Select the correct answer.

A bus and a car have an inelastic head-on collision. The bus has a mass of [tex]$1.5 \times 10^3$[/tex] kilograms and an initial velocity of +20 meters/second. The car has a mass of [tex]$9.5 \times 10^2$[/tex] kilograms and an initial velocity of -26 meters/second. What is their total momentum after the collision?

A. [tex][tex]$2.5 \times 10^3$[/tex][/tex] kilogram meters/second
B. [tex]$3.0 \times 10^3$[/tex] kilogram meters/second
C. [tex]$5.3 \times 10^3$[/tex] kilogram meters/second
D. [tex][tex]$5.8 \times 10^3$[/tex][/tex] kilogram meters/second
E. [tex]$6.0 \times 10^3$[/tex] kilogram meters/second



Answer :

To solve this problem, we need to calculate the total momentum of the bus and the car after the collision. Here are the steps to find the solution:

1. Understand momentum: Momentum (p) is the product of mass (m) and velocity (v), given by the formula [tex]\( p = m \cdot v \)[/tex].

2. Calculate the momentum of the bus:
- Mass of the bus ([tex]\(m_{\text{bus}}\)[/tex]): [tex]\( 1.5 \times 10^3 \)[/tex] kg
- Velocity of the bus ([tex]\(v_{\text{bus}}\)[/tex]): [tex]\( +20 \)[/tex] m/s
- Momentum of the bus ([tex]\(p_{\text{bus}}\)[/tex]): [tex]\( p_{\text{bus}} = m_{\text{bus}} \cdot v_{\text{bus}} = 1.5 \times 10^3 \, \text{kg} \times 20 \, \text{m/s} = 30,000 \, \text{kg} \cdot \text{m/s} \)[/tex]

3. Calculate the momentum of the car:
- Mass of the car ([tex]\(m_{\text{car}}\)[/tex]): [tex]\( 9.5 \times 10^2 \)[/tex] kg
- Velocity of the car ([tex]\(v_{\text{car}}\)[/tex]): [tex]\( -26 \)[/tex] m/s
- Momentum of the car ([tex]\(p_{\text{car}}\)[/tex]): [tex]\( p_{\text{car}} = m_{\text{car}} \cdot v_{\text{car}} = 9.5 \times 10^2 \, \text{kg} \times (-26) \, \text{m/s} = -24,700 \, \text{kg} \cdot \text{m/s} \)[/tex]

4. Calculate the total momentum after the collision:
- Total momentum after the collision ([tex]\(p_{\text{total}}\)[/tex]): [tex]\( p_{\text{total}} = p_{\text{bus}} + p_{\text{car}} = 30,000 \, \text{kg} \cdot \text{m/s} + (-24,700 \, \text{kg} \cdot \text{m/s}) = 5,300 \, \text{kg} \cdot \text{m/s} \)[/tex]

The total momentum after the collision is [tex]\( 5,300 \, \text{kg} \cdot \text{m/s} \)[/tex], which corresponds to option C.

So, the correct answer is:
C. [tex]\( 5.3 \times 10^3 \)[/tex] kilogram meters/second