Answer :
To determine which of the provided options is equivalent to the expression [tex]\(\sqrt[7]{100^6}\)[/tex], follow these steps:
1. Rewrite the Radical Expression as a Fractional Exponent:
[tex]\[ \sqrt[7]{100^6} = 100^{\frac{6}{7}} \][/tex]
2. Simplify [tex]\(\mathbf{100^{\frac{6}{7}}}\)[/tex] by Expressing [tex]\(\mathbf{100}\)[/tex] as [tex]\(\mathbf{10^2}\)[/tex]:
[tex]\[ 100 = 10^2 \][/tex]
Therefore,
[tex]\[ 100^{\frac{6}{7}} = \left(10^2\right)^{\frac{6}{7}} \][/tex]
3. Use the Power of a Power Property to Combine the Exponents:
[tex]\[ \left(10^2\right)^{\frac{6}{7}} = 10^{2 \cdot \frac{6}{7}} = 10^{\frac{12}{7}} \][/tex]
4. Recognize That [tex]\(\mathbf{10^{\frac{12}{7}}}\)[/tex] Equals One of the Given Options:
[tex]\[ \mathbf{D. \ 10^{\frac{6}{7}}} \][/tex]
Therefore, the equivalent expression is:
[tex]\[ \boxed{10^{\frac{6}{7}}} \][/tex]
So, the correct answer is [tex]\(\mathbf{D: \ 10^{\frac{6}{7}}}\)[/tex].
1. Rewrite the Radical Expression as a Fractional Exponent:
[tex]\[ \sqrt[7]{100^6} = 100^{\frac{6}{7}} \][/tex]
2. Simplify [tex]\(\mathbf{100^{\frac{6}{7}}}\)[/tex] by Expressing [tex]\(\mathbf{100}\)[/tex] as [tex]\(\mathbf{10^2}\)[/tex]:
[tex]\[ 100 = 10^2 \][/tex]
Therefore,
[tex]\[ 100^{\frac{6}{7}} = \left(10^2\right)^{\frac{6}{7}} \][/tex]
3. Use the Power of a Power Property to Combine the Exponents:
[tex]\[ \left(10^2\right)^{\frac{6}{7}} = 10^{2 \cdot \frac{6}{7}} = 10^{\frac{12}{7}} \][/tex]
4. Recognize That [tex]\(\mathbf{10^{\frac{12}{7}}}\)[/tex] Equals One of the Given Options:
[tex]\[ \mathbf{D. \ 10^{\frac{6}{7}}} \][/tex]
Therefore, the equivalent expression is:
[tex]\[ \boxed{10^{\frac{6}{7}}} \][/tex]
So, the correct answer is [tex]\(\mathbf{D: \ 10^{\frac{6}{7}}}\)[/tex].