Consider the following equation:

[tex]\[ CO (g) + Cl_2(g) \rightarrow COCl_2(g) \][/tex]

If 0.90 moles of [tex]\( Cl_2(g) \)[/tex] reacts fully with carbon monoxide, how many moles of [tex]\( COCl_2(g) \)[/tex] will be made?

A. 1.8 moles [tex]\( COCl_2(g) \)[/tex]

B. 0.45 moles [tex]\( COCl_2(g) \)[/tex]

C. 2.7 moles [tex]\( COCl_2(g) \)[/tex]

D. 0.90 moles [tex]\( COCl_2(g) \)[/tex]



Answer :

To determine how many moles of [tex]\( \text{COCl}_2 \)[/tex] will be produced when 0.90 moles of [tex]\( \text{Cl}_2 \)[/tex] react fully with carbon monoxide ([tex]\(CO\)[/tex]), we need to use the balanced chemical equation and the concept of molar ratios.

The balanced chemical equation is:
[tex]\[ CO (g) + Cl_2 (g) \rightarrow COCl_2 (g) \][/tex]

From the equation, you can see that 1 mole of carbon monoxide ([tex]\(CO\)[/tex]) reacts with 1 mole of chlorine gas ([tex]\(Cl_2\)[/tex]) to produce 1 mole of phosgene ([tex]\(COCl_2\)[/tex]). This indicates a 1:1 molar ratio between chlorine gas ([tex]\(Cl_2\)[/tex]) and phosgene ([tex]\(COCl_2\)[/tex]).

Given that we have 0.90 moles of [tex]\(Cl_2\)[/tex]:
- According to the 1:1 molar ratio, 0.90 moles of [tex]\(Cl_2\)[/tex] will produce the same amount of [tex]\(COCl_2\)[/tex].

Therefore:
[tex]\[ 0.90 \text{ moles of } Cl_2 \text{ will produce } 0.90 \text{ moles of } COCl_2. \][/tex]

Hence, the correct answer is:
[tex]\[ 0.90 \text{ moles of } COCl_2. \][/tex]