Simplify the expression below as much as possible.

[tex]\[
(6+4i) + (3-3i)
\][/tex]

A. [tex]\(9+7i\)[/tex]
B. [tex]\(9+i\)[/tex]
C. [tex]\(3+7i\)[/tex]
D. [tex]\(3+i\)[/tex]



Answer :

To simplify the given expression [tex]\((6 + 4i) + (3 - 3i)\)[/tex], we need to add the real parts together and the imaginary parts together.

1. Identify the real parts:
- The real part of [tex]\(6 + 4i\)[/tex] is 6.
- The real part of [tex]\(3 - 3i\)[/tex] is 3.

2. Add the real parts:
[tex]\[ 6 + 3 = 9 \][/tex]

3. Identify the imaginary parts:
- The imaginary part of [tex]\(6 + 4i\)[/tex] is [tex]\(4i\)[/tex].
- The imaginary part of [tex]\(3 - 3i\)[/tex] is [tex]\(-3i\)[/tex].

4. Add the imaginary parts:
[tex]\[ 4i + (-3i) = 4i - 3i = 1i = i \][/tex]

5. Combine the results:
[tex]\[ \text{Real part: } 9 \][/tex]
[tex]\[ \text{Imaginary part: } i \][/tex]
Therefore, combining the real and imaginary parts, we get [tex]\(9 + i\)[/tex].

So, the simplified expression is [tex]\(9 + i\)[/tex], which corresponds to option C: [tex]\(\boxed{9 + i}\)[/tex].