For the function [tex]\( f(x) = 5^{-x} \)[/tex], calculate the following function values:

[tex]\[
\begin{array}{l}
f(3) = \\
f(4) =
\end{array}
\][/tex]



Answer :

Certainly! Let's calculate the function values for [tex]\( f(x) = 5^{-x} \)[/tex].

1. Calculation for [tex]\( f(3) \)[/tex]:
- We want to find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex], so we substitute [tex]\( x \)[/tex] with [tex]\( 3 \)[/tex] in the function:
[tex]\[ f(3) = 5^{-3} \][/tex]
- This evaluates to:
[tex]\[ f(3) = 0.008 \][/tex]

2. Calculation for [tex]\( f(4) \)[/tex]:
- Next, we want to find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 4 \)[/tex], so we substitute [tex]\( x \)[/tex] with [tex]\( 4 \)[/tex] in the function:
[tex]\[ f(4) = 5^{-4} \][/tex]
- This evaluates to:
[tex]\[ f(4) = 0.0016 \][/tex]

So, the function values are:
[tex]\[ \begin{array}{l} f(3) = 0.008 \\ f(4) = 0.0016 \end{array} \][/tex]