Factor completely [tex]$x^8 - 81$[/tex].

A. [tex]$\left(x^4 - 9\right)\left(x^4 + 9\right)$[/tex]
B. [tex]$\left(x^2 - 3\right)\left(x^2 + 3\right)\left(x^4 - 9\right)$[/tex]
C. [tex][tex]$\left(x^2 - 3\right)\left(x^2 + 3\right)\left(x^4 + 9\right)$[/tex][/tex]
D. [tex]$\left(x^2 - 3\right)\left(x^2 - 3\right)\left(x^4 - 9\right)$[/tex]



Answer :

To factor the expression [tex]\( x^8 - 81 \)[/tex] completely, let's follow the steps to break it down.

1. Recognize the structure of the polynomial:
The expression [tex]\( x^8 - 81 \)[/tex] can be viewed as a difference of squares:
[tex]\[ x^8 - 81 = (x^4)^2 - 9^2 \][/tex]
Using the difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex], we get:
[tex]\[ x^8 - 81 = (x^4 - 9)(x^4 + 9) \][/tex]

2. Factor the term [tex]\( x^4 - 9 \)[/tex]:
Notice again that [tex]\( x^4 - 9 \)[/tex] can be written as a difference of squares:
[tex]\[ x^4 - 9 = (x^2)^2 - 3^2 \][/tex]
Applying the difference of squares formula again, we have:
[tex]\[ x^4 - 9 = (x^2 - 3)(x^2 + 3) \][/tex]

3. Rewrite the expression:
Substitute the factored form of [tex]\( x^4 - 9 \)[/tex] back into the original expression:
[tex]\[ x^8 - 81 = (x^2 - 3)(x^2 + 3)(x^4 + 9) \][/tex]

So, the completely factored form of [tex]\( x^8 - 81 \)[/tex] is:
[tex]\[ (x^2 - 3)(x^2 + 3)(x^4 + 9) \][/tex]

Therefore, the correct choice among the options provided is:
[tex]\[ \left(x^2 - 3 \right)\left(x^2 + 3 \right)\left(x^4 + 9 \right) \][/tex]