Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
What is the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex], for the reaction:
[tex]\[ 2 \text{NOCl}(g) \rightarrow 2 \text{NO}(g) + \text{Cl}_2(g) \][/tex]
given the equilibrium concentrations:
[tex]\[ [\text{NO}] = 0.02\, M \][/tex]
[tex]\[ [\text{Cl}_2] = 0.01\, M \][/tex]
[tex]\[ [\text{NOCl}] = 0.5\, M \][/tex]

B. What is the pH of a weak acid solution with [tex]\([ \text{H}^+ ] = 2.1 \times 10^{-6}\, M\)[/tex]? (4 points)



Answer :

Sure! Let's solve the given two parts systematically:

### Part A: Calculate the Equilibrium Constant [tex]\( K_{\text{eq}} \)[/tex]

For the reaction:
[tex]\[ 2 \text{NOCl} (g) \rightleftharpoons 2 \text{NO} (g) + \text{Cl}_2 (g) \][/tex]

The expression for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ K_{\text{eq}} = \frac{[\text{NO}]^2 [\text{Cl}_2]}{[\text{NOCl}]^2} \][/tex]

We're given the following equilibrium concentrations:
- [tex]\([ \text{NO} ] = 0.02 \, \text{M}\)[/tex]
- [tex]\([ \text{Cl}_2] = 0.01 \, \text{M}\)[/tex]
- [tex]\([ \text{NOCl} ] = 0.5 \, \text{M}\)[/tex]

Plugging these values into the equation:

[tex]\[ K_{\text{eq}} = \frac{(0.02)^2 \times 0.01}{(0.5)^2} \][/tex]

Calculating the numerator:
[tex]\[ (0.02)^2 = 0.0004 \][/tex]
[tex]\[ 0.0004 \times 0.01 = 0.000004 \][/tex]

Calculating the denominator:
[tex]\[ (0.5)^2 = 0.25 \][/tex]

So,
[tex]\[ K_{\text{eq}} = \frac{0.000004}{0.25} = 0.000016 \][/tex]
[tex]\[ K_{\text{eq}} = 1.6 \times 10^{-5} \][/tex]

Thus, the value of the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is [tex]\( 1.6 \times 10^{-5} \)[/tex].

### Part B: Calculate the pH of a Weak Acid Solution

We're given the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex] as:
[tex]\[ [\text{H}^+] = 2.1 \times 10^{-6} \, \text{M} \][/tex]

The pH of a solution is calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}([\text{H}^+]) \][/tex]

Substituting the given [tex]\( [\text{H}^+] \)[/tex]:

[tex]\[ \text{pH} = -\log_{10}(2.1 \times 10^{-6}) \][/tex]

Calculating the logarithm first:
[tex]\[ \log_{10}(2.1 \times 10^{-6}) = \log_{10}(2.1) + \log_{10}(10^{-6}) \][/tex]
[tex]\[ \log_{10}(2.1) \approx 0.322 \][/tex]
[tex]\[ \log_{10}(10^{-6}) = -6 \][/tex]

Adding these values:
[tex]\[ \log_{10}(2.1 \times 10^{-6}) = 0.322 - 6 = -5.678 \][/tex]

So, the pH is:
[tex]\[ \text{pH} = -(-5.678) = 5.678 \][/tex]

Therefore, the pH of the weak acid solution is approximately 5.68 (more precisely 5.6777807052660805).

### Summary
- The equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is [tex]\( 1.6 \times 10^{-5} \)[/tex].
- The pH of the weak acid solution is approximately 5.68.