Find the image of [tex]$(1,2)$[/tex] after a reflection about the [tex]$x$[/tex]-axis followed by a reflection about the [tex][tex]$y$[/tex][/tex]-axis.

[tex]$([?], \square)$[/tex]

Enter the number that belongs in the green box.



Answer :

To find the image of the point [tex]\((1, 2)\)[/tex] after a sequence of reflections, we will follow the steps provided:

1. Reflect the point [tex]\((1, 2)\)[/tex] about the [tex]\(x\)[/tex]-axis:
- When reflecting a point about the [tex]\(x\)[/tex]-axis, the [tex]\(x\)[/tex]-coordinate remains the same, and the [tex]\(y\)[/tex]-coordinate changes its sign.
- The reflected point will be [tex]\((1, -2)\)[/tex].

2. Reflect the new point [tex]\((1, -2)\)[/tex] about the [tex]\(y\)[/tex]-axis:
- When reflecting a point about the [tex]\(y\)[/tex]-axis, the [tex]\(y\)[/tex]-coordinate remains the same, and the [tex]\(x\)[/tex]-coordinate changes its sign.
- The reflected point will be [tex]\((-1, -2)\)[/tex].

Thus, the image of the point [tex]\((1, 2)\)[/tex] after the described sequence of reflections is [tex]\((-1, -2)\)[/tex]. Therefore, the number that belongs in the green box is:

[tex]\[ \boxed{-1} \][/tex]