According to the PACED decision-making tool, which of the alternatives below is the best choice?

\begin{tabular}{|c|c|c|c|}
\hline
& Criteria 1 & Criteria 2 & Criteria 3 \\
\hline
Alternative 1 & 1 & 4 & 5 \\
\hline
Alternative 2 & 2 & 5 & 2 \\
\hline
Alternative 3 & 2 & 3 & 3 \\
\hline
Alternative 4 & 3 & 4 & 2 \\
\hline
\end{tabular}

A. Alternative 1
B. Alternative 4
C. Alternative 3
D. Alternative 2



Answer :

To determine the best choice using the PACED decision-making tool, we'll need to evaluate each alternative based on the provided criteria scores. Here’s a detailed, step-by-step solution:

1. Summarize the Scores for Each Alternative:
We have four alternatives, each evaluated on three criteria:
[tex]\[ \begin{array}{cccc} \hline \text{Alternative} & \text{Criterion 1} & \text{Criterion 2} & \text{Criterion 3} \\ \hline 1 & 1 & 4 & 5 \\ 2 & 2 & 5 & 2 \\ 3 & 2 & 3 & 3 \\ 4 & 3 & 4 & 2 \\ \hline \end{array} \][/tex]

2. Calculate the Total Score for Each Alternative:

- Alternative 1: [tex]\(1 + 4 + 5 = 10\)[/tex]
- Alternative 2: [tex]\(2 + 5 + 2 = 9\)[/tex]
- Alternative 3: [tex]\(2 + 3 + 3 = 8\)[/tex]
- Alternative 4: [tex]\(3 + 4 + 2 = 9\)[/tex]

3. Compare the Total Scores:
The total scores for each alternative are:
- Alternative 1: 10
- Alternative 2: 9
- Alternative 3: 8
- Alternative 4: 9

4. Determine the Highest Score:
The highest total score among the alternatives is 10, which corresponds to Alternative 1.

5. Conclusion:
Given the scores and the highest total, the best choice based on the PACED decision-making tool is:

A. Alternative 1

Thus, Alternative 1 is the best choice among the given options.