Answer :
Certainly! Let's solve the problem step-by-step to find the value of the given expression when [tex]\( x = 10 \)[/tex].
The expression we need to evaluate is:
[tex]\[ \frac{x^5 - x}{x^1} \][/tex]
First, substitute [tex]\( x = 10 \)[/tex] into the expression:
[tex]\[ \frac{10^5 - 10}{10^1} \][/tex]
Next, calculate each part of the expression:
1. Compute [tex]\( 10^5 \)[/tex]:
[tex]\[ 10^5 = 100000 \][/tex]
2. Compute [tex]\( 10 \)[/tex]:
[tex]\[ 10 = 10 \][/tex]
3. Subtract [tex]\( 10 \)[/tex] from [tex]\( 100000 \)[/tex]:
[tex]\[ 100000 - 10 = 99990 \][/tex]
4. Compute [tex]\( 10^1 \)[/tex]:
[tex]\[ 10^1 = 10 \][/tex]
5. Divide [tex]\( 99990 \)[/tex] by [tex]\( 10 \)[/tex]:
[tex]\[ \frac{99990}{10} = 9999 \][/tex]
Thus, the value of the given expression when [tex]\( x = 10 \)[/tex] is:
[tex]\[ \boxed{9999} \][/tex]
The expression we need to evaluate is:
[tex]\[ \frac{x^5 - x}{x^1} \][/tex]
First, substitute [tex]\( x = 10 \)[/tex] into the expression:
[tex]\[ \frac{10^5 - 10}{10^1} \][/tex]
Next, calculate each part of the expression:
1. Compute [tex]\( 10^5 \)[/tex]:
[tex]\[ 10^5 = 100000 \][/tex]
2. Compute [tex]\( 10 \)[/tex]:
[tex]\[ 10 = 10 \][/tex]
3. Subtract [tex]\( 10 \)[/tex] from [tex]\( 100000 \)[/tex]:
[tex]\[ 100000 - 10 = 99990 \][/tex]
4. Compute [tex]\( 10^1 \)[/tex]:
[tex]\[ 10^1 = 10 \][/tex]
5. Divide [tex]\( 99990 \)[/tex] by [tex]\( 10 \)[/tex]:
[tex]\[ \frac{99990}{10} = 9999 \][/tex]
Thus, the value of the given expression when [tex]\( x = 10 \)[/tex] is:
[tex]\[ \boxed{9999} \][/tex]
Answer:
9,999
Step-by-step explanation:
Given:
- x = 10
Plotting the value of x into the expression;
[tex]\rightarrow \boxed{\frac{x^{5} - x}{x^1} = \frac{x^{5} - x}{x}}[/tex]
[tex]\implies \frac{10^{5} - 10}{10}[/tex]
[tex]\implies \frac{100,000 - 10}{10}[/tex]
[tex]\implies \frac{99,990}{10}[/tex]
[tex]\implies 9,999[/tex]