Answer :

Certainly! Let's solve the problem step-by-step to find the value of the given expression when [tex]\( x = 10 \)[/tex].

The expression we need to evaluate is:

[tex]\[ \frac{x^5 - x}{x^1} \][/tex]

First, substitute [tex]\( x = 10 \)[/tex] into the expression:

[tex]\[ \frac{10^5 - 10}{10^1} \][/tex]

Next, calculate each part of the expression:

1. Compute [tex]\( 10^5 \)[/tex]:
[tex]\[ 10^5 = 100000 \][/tex]

2. Compute [tex]\( 10 \)[/tex]:
[tex]\[ 10 = 10 \][/tex]

3. Subtract [tex]\( 10 \)[/tex] from [tex]\( 100000 \)[/tex]:
[tex]\[ 100000 - 10 = 99990 \][/tex]

4. Compute [tex]\( 10^1 \)[/tex]:
[tex]\[ 10^1 = 10 \][/tex]

5. Divide [tex]\( 99990 \)[/tex] by [tex]\( 10 \)[/tex]:
[tex]\[ \frac{99990}{10} = 9999 \][/tex]

Thus, the value of the given expression when [tex]\( x = 10 \)[/tex] is:

[tex]\[ \boxed{9999} \][/tex]

Answer:

9,999

Step-by-step explanation:

Given:

  • x = 10

Plotting the value of x into the expression;

[tex]\rightarrow \boxed{\frac{x^{5} - x}{x^1} = \frac{x^{5} - x}{x}}[/tex]

[tex]\implies \frac{10^{5} - 10}{10}[/tex]

[tex]\implies \frac{100,000 - 10}{10}[/tex]

[tex]\implies \frac{99,990}{10}[/tex]

[tex]\implies 9,999[/tex]