When 24.0 V is applied to a capacitor, it stores [tex]$3.92 \times 10^{-4} J$[/tex] of energy. What is the capacitance?

[tex]$[ \, \times 10^{\,} \, \text{F}]$[/tex]

- Coefficient (green)
- Exponent (yellow)

Enter:



Answer :

To determine the capacitance of a capacitor given the stored energy and the applied voltage, we use the following formula for the energy stored in a capacitor:

[tex]\[ E = \frac{1}{2} C V^2 \][/tex]

Where:
- [tex]\( E \)[/tex] is the energy stored in the capacitor (in Joules).
- [tex]\( C \)[/tex] is the capacitance (in Farads).
- [tex]\( V \)[/tex] is the voltage across the capacitor (in Volts).

Given values:
- [tex]\( E = 3.92 \times 10^{-4} \)[/tex] Joules
- [tex]\( V = 24.0 \)[/tex] Volts

Step-by-step solution:

1. Rearrange the formula to solve for [tex]\( C \)[/tex]:

[tex]\[ C = \frac{2E}{V^2} \][/tex]

2. Substitute the given values into the formula:

[tex]\[ C = \frac{2 \times 3.92 \times 10^{-4}}{(24.0)^2} \][/tex]

3. Calculate the denominator:

[tex]\[ (24.0)^2 = 576 \][/tex]

4. Now, perform the division:

[tex]\[ C = \frac{7.84 \times 10^{-4}}{576} \][/tex]

5. Divide the numerator by the denominator:

[tex]\[ C = 1.361111111111111 \times 10^{-6} \][/tex]

To express the capacitance in scientific notation, multiply and divide by appropriate powers of ten:

[tex]\[ C \approx 1.361111111111111 \times 10^{-6} \text{ F} \][/tex]

So, the coefficient (in green) is:

[tex]\[ 1.361111111111111 \][/tex]

And the exponent (in yellow) is:

[tex]\[ -6 \][/tex]

Thus, the capacitance of the capacitor is approximately:

[tex]\[ 1.361111111111111 \times 10^{-6} \text{ F} \][/tex]