Answer :
To determine the value of [tex]\( x \)[/tex] in the given system of equations:
[tex]\[ \begin{cases} x + 3y = 2 \\ 4x - 3y = 23 \end{cases} \][/tex]
we will use the method of elimination. Here is the step-by-step solution:
1. First, we will add the two equations to eliminate [tex]\( y \)[/tex].
[tex]\[ (x + 3y) + (4x - 3y) = 2 + 23 \][/tex]
2. Combine like terms:
[tex]\[ x + 4x + 3y - 3y = 2 + 23 \][/tex]
This simplifies to:
[tex]\[ 5x = 25 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x = \frac{25}{5} \][/tex]
[tex]\[ x = 5 \][/tex]
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 5 \)[/tex]. The correct answer is (B) 5.
[tex]\[ \begin{cases} x + 3y = 2 \\ 4x - 3y = 23 \end{cases} \][/tex]
we will use the method of elimination. Here is the step-by-step solution:
1. First, we will add the two equations to eliminate [tex]\( y \)[/tex].
[tex]\[ (x + 3y) + (4x - 3y) = 2 + 23 \][/tex]
2. Combine like terms:
[tex]\[ x + 4x + 3y - 3y = 2 + 23 \][/tex]
This simplifies to:
[tex]\[ 5x = 25 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x = \frac{25}{5} \][/tex]
[tex]\[ x = 5 \][/tex]
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 5 \)[/tex]. The correct answer is (B) 5.