[tex]\[
BC = \sqrt{e^2 + 1}
\][/tex]
Application of the distance formula:
[tex]\[
CA = \sqrt{d - e^2} = d - e
\][/tex]

[tex]\[
\begin{array}{|c|c|}
\hline
7. \left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 = ? & \text{Pythagorean theorem} \\
\hline
\begin{array}{l}
(1 + d^2) + (e^2 + 1) = d^2 - 2de + e^2 \\
2 + d^2 + e^2 = d^2 - 2de + e^2 \\
2 = -2de \\
-1 = de
\end{array} & \text{Simplify} \\
\hline
9. -1 = m_{AB} \cdot m_{BC} & \text{Substitution property of equality} \\
\hline
\end{array}
\][/tex]

Which expression is missing from step 7?

A. [tex]\(A^2 + B^2\)[/tex]

B. [tex]\(-2de\)[/tex]

C. [tex]\((A + B)^2\)[/tex]

D. [tex]\((d - e)^2\)[/tex]



Answer :

To solve the question, we need to determine which expression is missing from step 7. Let’s walk through the calculations step-by-step and identify the missing expression.

1. We start with the expression given in step 7:
[tex]\[ \left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 \][/tex]

2. Squaring each term:
[tex]\[ (\sqrt{1 + d^2})^2 + (\sqrt{e^2 + 1})^2 = (1 + d^2) + (e^2 + 1) \][/tex]

3. Combine the terms in the parentheses:
[tex]\[ 1 + d^2 + e^2 + 1 = 2 + d^2 + e^2 \][/tex]

4. According to the Pythagorean theorem and the given equation:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]

5. Compare both sides of the equation:
[tex]\[ 2 + d^2 + e^2 \quad \text{and} \quad d^2 - 2de + e^2 \][/tex]

6. Notice that both sides contain [tex]\(d^2 + e^2\)[/tex], so the remaining terms on both sides of the equation are:
[tex]\[ 2 \quad \text{and} \quad -2de \][/tex]

7. Therefore, equate the remaining terms:
[tex]\[ 2 = -2de \][/tex]

Since [tex]\(2\)[/tex] on the left side corresponds to [tex]\(-2de\)[/tex] on the right side of the equation, the missing expression from step 7 is:
[tex]\[ \boxed{-2de} \][/tex]

Hence, the correct choice is:
B. [tex]\(-2 de\)[/tex]