How many moles of [tex]$LiNO_3$[/tex] are equivalent to 525 g of [tex]$LiNO_3$[/tex]?

Given:
- Molar mass of [tex][tex]$LiNO_3$[/tex][/tex] = 68.95 g/mol

Find:
- [tex]? \text{ mol of } LiNO_3[/tex]



Answer :

To determine the number of moles of Lithium Nitrate ([tex]$LiNO_3$[/tex]) in a given mass of 525 grams, follow these steps:

1. Identify the given mass and the molar mass:
- The mass of [tex]$LiNO_3$[/tex] is 525 grams.
- The molar mass of [tex]$LiNO_3$[/tex] is 68.95 grams per mole.

2. Understand the concept of moles and molar mass:
- The molar mass of a substance is the mass of one mole of that substance.
- To find the number of moles, you divide the given mass by the molar mass.

3. Setup the formula to calculate the moles:
- The formula to calculate the number of moles ([tex]$n$[/tex]) is:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]

4. Substitute the given values into the formula:
- Given mass = 525 grams
- Molar mass = 68.95 grams per mole

So, we substitute these values into the formula:
[tex]\[ n = \frac{525 \text{ grams}}{68.95 \text{ grams per mole}} \][/tex]

5. Perform the division:
[tex]\[ n \approx 7.614213197969542 \text{ moles} \][/tex]

6. Conclusion:
- Therefore, the number of moles of [tex]$LiNO_3$[/tex] in 525 grams is approximately 7.614 moles.

Hence, 525 grams of [tex]$LiNO_3$[/tex] is equivalent to approximately 7.614 moles of [tex]$LiNO_3$[/tex].