Use the change-of-base formula and a calculator to evaluate the logarithm.

[tex]\[ \log _{\sqrt{5}} 6 \][/tex]

1. Use the change-of-base formula to rewrite the given expression in terms of natural logarithms or common logarithms.

[tex]\[ \log _{\sqrt{5}} 6 = \square \][/tex]
(Do not evaluate. Do not simplify.)

2. Evaluate the expression.

[tex]\[ \log _{\sqrt{5}} 6 \approx \square \][/tex]
(Type an integer or a decimal. Do not round until the final answer. Then round to three decimal places as needed.)



Answer :

To evaluate the logarithm [tex]\(\log_{\sqrt{5}} 6\)[/tex] using the change-of-base formula, we proceed as follows:

1. Step 1: Use the change-of-base formula to rewrite the given expression in terms of natural logarithms (or common logarithms):
[tex]\[ \log_{\sqrt{5}} 6 = \frac{\log 6}{\log \sqrt{5}} \][/tex]

2. Step 2: Evaluate each logarithmic expression using a calculator.

- Evaluate [tex]\(\log 6\)[/tex]:
[tex]\[ \log 6 = 1.791759469228055 \][/tex]

- Evaluate [tex]\(\log \sqrt{5}\)[/tex]:
[tex]\[ \log \sqrt{5} = 0.8047189562170503 \][/tex]

3. Step 3: Substitute these values back into the change-of-base formula and perform the division:
[tex]\[ \log_{\sqrt{5}} 6 = \frac{1.791759469228055}{0.8047189562170503} = 2.2265655051187565 \][/tex]

4. Step 4: Round the result to three decimal places as needed:
[tex]\[ \log_{\sqrt{5}} 6 \approx 2.227 \][/tex]

Therefore, the final evaluated expression is:
[tex]\[ \log_{\sqrt{5}} 6 \approx 2.227 \][/tex]

This concludes the step-by-step solution using the change-of-base formula and evaluating using a calculator.