Answer :
Certainly! Let's solve each of the given fractions step by step:
### 1. [tex]\(\frac{5}{25} + \frac{10}{25}\)[/tex]
Since both fractions have the same denominator, we can simply add the numerators:
[tex]\[ \frac{5}{25} + \frac{10}{25} = \frac{5 + 10}{25} = \frac{15}{25} \][/tex]
### 4. [tex]\(\frac{5}{12} + \frac{3}{12}\)[/tex]
This problem also features fractions with the same denominator. Thus, we add the numerators:
[tex]\[ \frac{5}{12} + \frac{3}{12} = \frac{5 + 3}{12} = \frac{8}{12} \][/tex]
### 2. [tex]\(\frac{3}{18} + \frac{6}{18}\)[/tex]
For these like fractions, we again add the numerators:
[tex]\[ \frac{3}{18} + \frac{6}{18} = \frac{3 + 6}{18} = \frac{9}{18} \][/tex]
### 5. [tex]\(\frac{8}{10} + \frac{4}{10}\)[/tex]
Adding the numerators of these fractions with a common denominator:
[tex]\[ \frac{8}{10} + \frac{4}{10} = \frac{8 + 4}{10} = \frac{12}{10} \][/tex]
### 3. [tex]\(\frac{3}{21} + \frac{4}{21}\)[/tex]
Finally, for the last pair of fractions, add the numerators:
[tex]\[ \frac{3}{21} + \frac{4}{21} = \frac{3 + 4}{21} = \frac{7}{21} \][/tex]
So, the solutions to the given problems are:
1. [tex]\(\frac{15}{25}\)[/tex]
4. [tex]\(\frac{8}{12}\)[/tex]
2. [tex]\(\frac{9}{18}\)[/tex]
5. [tex]\(\frac{12}{10}\)[/tex]
3. [tex]\(\frac{7}{21}\)[/tex]
### 1. [tex]\(\frac{5}{25} + \frac{10}{25}\)[/tex]
Since both fractions have the same denominator, we can simply add the numerators:
[tex]\[ \frac{5}{25} + \frac{10}{25} = \frac{5 + 10}{25} = \frac{15}{25} \][/tex]
### 4. [tex]\(\frac{5}{12} + \frac{3}{12}\)[/tex]
This problem also features fractions with the same denominator. Thus, we add the numerators:
[tex]\[ \frac{5}{12} + \frac{3}{12} = \frac{5 + 3}{12} = \frac{8}{12} \][/tex]
### 2. [tex]\(\frac{3}{18} + \frac{6}{18}\)[/tex]
For these like fractions, we again add the numerators:
[tex]\[ \frac{3}{18} + \frac{6}{18} = \frac{3 + 6}{18} = \frac{9}{18} \][/tex]
### 5. [tex]\(\frac{8}{10} + \frac{4}{10}\)[/tex]
Adding the numerators of these fractions with a common denominator:
[tex]\[ \frac{8}{10} + \frac{4}{10} = \frac{8 + 4}{10} = \frac{12}{10} \][/tex]
### 3. [tex]\(\frac{3}{21} + \frac{4}{21}\)[/tex]
Finally, for the last pair of fractions, add the numerators:
[tex]\[ \frac{3}{21} + \frac{4}{21} = \frac{3 + 4}{21} = \frac{7}{21} \][/tex]
So, the solutions to the given problems are:
1. [tex]\(\frac{15}{25}\)[/tex]
4. [tex]\(\frac{8}{12}\)[/tex]
2. [tex]\(\frac{9}{18}\)[/tex]
5. [tex]\(\frac{12}{10}\)[/tex]
3. [tex]\(\frac{7}{21}\)[/tex]