Solve the following:

1. [tex]\frac{5}{25} + \frac{10}{25}[/tex]

2. [tex]\frac{3}{18} + \frac{6}{18}[/tex]

3. [tex]\frac{3}{21} + \frac{4}{21}[/tex]

4. [tex]\frac{5}{12} + \frac{3}{12}[/tex]

5. [tex]\frac{8}{10} + \frac{4}{10}[/tex]



Answer :

Certainly! Let's solve each of the given fractions step by step:

### 1. [tex]\(\frac{5}{25} + \frac{10}{25}\)[/tex]

Since both fractions have the same denominator, we can simply add the numerators:

[tex]\[ \frac{5}{25} + \frac{10}{25} = \frac{5 + 10}{25} = \frac{15}{25} \][/tex]

### 4. [tex]\(\frac{5}{12} + \frac{3}{12}\)[/tex]

This problem also features fractions with the same denominator. Thus, we add the numerators:

[tex]\[ \frac{5}{12} + \frac{3}{12} = \frac{5 + 3}{12} = \frac{8}{12} \][/tex]

### 2. [tex]\(\frac{3}{18} + \frac{6}{18}\)[/tex]

For these like fractions, we again add the numerators:

[tex]\[ \frac{3}{18} + \frac{6}{18} = \frac{3 + 6}{18} = \frac{9}{18} \][/tex]

### 5. [tex]\(\frac{8}{10} + \frac{4}{10}\)[/tex]

Adding the numerators of these fractions with a common denominator:

[tex]\[ \frac{8}{10} + \frac{4}{10} = \frac{8 + 4}{10} = \frac{12}{10} \][/tex]

### 3. [tex]\(\frac{3}{21} + \frac{4}{21}\)[/tex]

Finally, for the last pair of fractions, add the numerators:

[tex]\[ \frac{3}{21} + \frac{4}{21} = \frac{3 + 4}{21} = \frac{7}{21} \][/tex]

So, the solutions to the given problems are:

1. [tex]\(\frac{15}{25}\)[/tex]
4. [tex]\(\frac{8}{12}\)[/tex]
2. [tex]\(\frac{9}{18}\)[/tex]
5. [tex]\(\frac{12}{10}\)[/tex]
3. [tex]\(\frac{7}{21}\)[/tex]