Answer :
To find out which transformation maps the original triangle vertices [tex]\( B(-3,0), C(2,-1), D(-1,2) \)[/tex] to the new triangle vertices [tex]\( B '(1,-2), C '(0,3), D '(3,0) \)[/tex], we need to examine each proposed transformation step-by-step.
Let's analyze each of the given transformations to see which one correctly maps the original vertices to the transformed vertices.
### Transformation 1: [tex]\((x, y) \to (x+1, y+1) \to (y, x)\)[/tex]
1. Apply the first part of the transformation [tex]\((x + 1, y + 1)\)[/tex]:
- For [tex]\( B(-3,0) \)[/tex]: [tex]\((x+1, y+1) = (-3+1, 0+1) = (-2, 1)\)[/tex]
- For [tex]\( C(2,-1) \)[/tex]: [tex]\((x+1, y+1) = (2+1, -1+1) = (3, 0)\)[/tex]
- For [tex]\( D(-1,2) \)[/tex]: [tex]\((x+1, y+1) = (-1+1, 2+1) = (0, 3)\)[/tex]
2. Apply the second part of the transformation [tex]\((y, x)\)[/tex]:
- For [tex]\( (-2,1) \)[/tex]: [tex]\((y, x) = (1, -2)\)[/tex]
- For [tex]\( (3,0) \)[/tex]: [tex]\((y, x) = (0, 3)\)[/tex]
- For [tex]\( (0,3) \)[/tex]: [tex]\((y, x) = (3, 0)\)[/tex]
After both steps, the transformed points are: [tex]\( B'(1, -2), C'(0, 3), D'(3, 0) \)[/tex].
This matches the target points exactly: [tex]\( B'(1,-2), C'(0,3), D'(3,0) \)[/tex].
Thus, this transformation is correctly [tex]\((x, y)-(x+1, y+1) \to (y, x)\)[/tex].
Result: This is the correct transformation. No need to check the other transformations.
Let's analyze each of the given transformations to see which one correctly maps the original vertices to the transformed vertices.
### Transformation 1: [tex]\((x, y) \to (x+1, y+1) \to (y, x)\)[/tex]
1. Apply the first part of the transformation [tex]\((x + 1, y + 1)\)[/tex]:
- For [tex]\( B(-3,0) \)[/tex]: [tex]\((x+1, y+1) = (-3+1, 0+1) = (-2, 1)\)[/tex]
- For [tex]\( C(2,-1) \)[/tex]: [tex]\((x+1, y+1) = (2+1, -1+1) = (3, 0)\)[/tex]
- For [tex]\( D(-1,2) \)[/tex]: [tex]\((x+1, y+1) = (-1+1, 2+1) = (0, 3)\)[/tex]
2. Apply the second part of the transformation [tex]\((y, x)\)[/tex]:
- For [tex]\( (-2,1) \)[/tex]: [tex]\((y, x) = (1, -2)\)[/tex]
- For [tex]\( (3,0) \)[/tex]: [tex]\((y, x) = (0, 3)\)[/tex]
- For [tex]\( (0,3) \)[/tex]: [tex]\((y, x) = (3, 0)\)[/tex]
After both steps, the transformed points are: [tex]\( B'(1, -2), C'(0, 3), D'(3, 0) \)[/tex].
This matches the target points exactly: [tex]\( B'(1,-2), C'(0,3), D'(3,0) \)[/tex].
Thus, this transformation is correctly [tex]\((x, y)-(x+1, y+1) \to (y, x)\)[/tex].
Result: This is the correct transformation. No need to check the other transformations.