Consider matrix [tex]A[/tex].

[tex]
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & -4 & 5 \\
1 & 5 & -7
\end{array}\right]
[/tex]

What sequence of row operations will change matrix [tex]A[/tex] to this matrix?

[tex]
\left[\begin{array}{ccc}
3 & 0 & 4 \\
2 & -5 & 11 \\
2 & 3 & 1
\end{array}\right]
[/tex]

- Switch [tex]R_1[/tex] and [tex]R_3[/tex].
- [tex]R_1 + 2R_2 \text{ replaces } R_2[/tex].
- [tex]R_2 + R_3 \text{ replaces } R_3[/tex].



Answer :

To transform the initial matrix [tex]\( A = \left[\begin{array}{ccc} 2 & 3 & 1 \\ 0 & -4 & 5 \\ 1 & 5 & -7 \end{array}\right] \)[/tex] into the matrix [tex]\( \left[\begin{array}{ccc} 3 & 8 & -6 \\ 4 & 2 & 7 \\ 2 & 3 & 1 \end{array}\right] \)[/tex], the following sequence of row operations should be applied:

1. Switch [tex]\(R_1\)[/tex] and [tex]\(R_3\)[/tex]. This operation will swap the first row and the third row:
[tex]\[ \left[\begin{array}{ccc} 1 & 5 & -7 \\ 0 & -4 & 5 \\ 2 & 3 & 1 \end{array}\right] \][/tex]

2. Replace [tex]\(R_2\)[/tex] with [tex]\(R_2 + 2R_3\)[/tex]. This operation will add 2 times the third row to the second row:
[tex]\[ \left[\begin{array}{ccc} 1 & 5 & -7 \\ 0 + 2 \cdot 2 & -4 + 2 \cdot 3 & 5 + 2 \cdot 1 \\ 2 & 3 & 1 \end{array}\right] = \left[\begin{array}{ccc} 1 & 5 & -7 \\ 4 & 2 & 7 \\ 2 & 3 & 1 \end{array}\right] \][/tex]

3. Replace [tex]\(R_1\)[/tex] with [tex]\(R_1 + R_3\)[/tex]. This operation will add the third row to the first row:
[tex]\[ \left[\begin{array}{ccc} 1 + 2 & 5 + 3 & -7 + 1 \\ 4 & 2 & 7 \\ 2 & 3 & 1 \end{array}\right] = \left[\begin{array}{ccc} 3 & 8 & -6 \\ 4 & 2 & 7 \\ 2 & 3 & 1 \end{array}\right] \][/tex]

Therefore, these row operations successfully transform the given matrix [tex]\( A \)[/tex] into the desired matrix. The sequence of operations is:

1. Switch [tex]\(R_1\)[/tex] and [tex]\(R_3\)[/tex].
2. [tex]\( R_2 + 2R_3 \)[/tex] replaces [tex]\( R_2 \)[/tex].
3. [tex]\( R_1 + R_3 \)[/tex] replaces [tex]\( R_1 \)[/tex].