Fill the empty slots by dragging tiles from the left to show the next step for solving the equation.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0.45 & -0.45 & [tex]$x$[/tex] & + & 0.33 & [tex]$=$[/tex] & -0.66 \\
\hline -0.45 & & & & & & \\
\hline 0.33 & & & & & & \\
\hline 0.66 & & & & & & \\
\hline - & & & & & & \\
\hline
\end{tabular}

Solve the two-step equation:

[tex]\[ -0.45 x + 0.33 = -0.66 \][/tex]

What is the solution?

A. [tex]\( x = -2.2 \)[/tex]

B. [tex]\( x = -1.4 \)[/tex]

C. [tex]\( x = 1.4 \)[/tex]

D. [tex]\( x = 2.2 \)[/tex]



Answer :

To solve the equation [tex]\(-0.45x + 0.33 = -0.66\)[/tex], we first need to isolate the variable [tex]\(x\)[/tex]. Let's go through the steps:

1. Subtract [tex]\(0.33\)[/tex] from both sides of the equation:

[tex]\[-0.45x + 0.33 - 0.33 = -0.66 - 0.33\][/tex]

2. Simplify the equation:

[tex]\[-0.45x = -0.99\][/tex]

3. Now, we need to solve for [tex]\(x\)[/tex]. Divide both sides of the equation by [tex]\(-0.45\)[/tex]:

[tex]\[x = \frac{-0.99}{-0.45}\][/tex]

4. Simplify the fraction:

[tex]\[x = 2.2\][/tex]

Therefore, the solution to the equation [tex]\(-0.45x + 0.33 = -0.66\)[/tex] is [tex]\(\boxed{x = 2.2}\)[/tex].