Which table can be created using the equation below?

[tex] -2 + 4x = y [/tex]

A.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & -22 \\
\hline
0 & -2 \\
\hline
3 & 10 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-22 & -5 \\
\hline
-2 & 0 \\
\hline
10 & 3 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & -18 \\
\hline
0 & -2 \\
\hline
3 & 10 \\
\hline
\end{tabular}



Answer :

To determine which table can be created using the given equation [tex]\( y = -2 + 4x \)[/tex], we need to validate the points listed in each table against the equation. Here's a step-by-step verification process for each table:

### Equation
[tex]\[ y = -2 + 4x \][/tex]

### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -5 & -22 \\ \hline 0 & -2 \\ \hline 3 & 10 \\ \hline \end{array} \][/tex]

1. For [tex]\( x = -5 \)[/tex]:
[tex]\[ y = -2 + 4(-5) = -2 - 20 = -22 \][/tex]
This matches the table entry.

2. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -2 + 4(0) = -2 \][/tex]
This matches the table entry.

3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = -2 + 4(3) = -2 + 12 = 10 \][/tex]
This matches the table entry.

Since all entries in Table 1 match the equation, this table is valid.

### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -22 & -5 \\ \hline -2 & 0 \\ \hline 10 & 3 \\ \hline \end{array} \][/tex]

1. For [tex]\( x = -22 \)[/tex]:
[tex]\[ y = -2 + 4(-22) = -2 - 88 = -90 \][/tex]
This does not match the table entry [tex]\( y = -5 \)[/tex].

2. Since the first entry does not match, we can conclude that Table 2 is not valid.

### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -5 & -18 \\ \hline 0 & -2 \\ \hline 3 & 10 \\ \hline \end{array} \][/tex]

1. For [tex]\( x = -5 \)[/tex]:
[tex]\[ y = -2 + 4(-5) = -2 - 20 = -22 \][/tex]
This does not match the table entry [tex]\( y = -18 \)[/tex].

2. Since the first entry does not match, we can conclude that Table 3 is not valid.

### Conclusion
After verifying the entries in all three tables, only Table 1 matches the given equation [tex]\( y = -2 + 4x \)[/tex].

Therefore, the correct table is:

[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -5 & -22 \\ \hline 0 & -2 \\ \hline 3 & 10 \\ \hline \end{tabular} \][/tex]