Answer :
To find the maximum and minimum values of the objective function [tex]\( f(x, y) = 10x + 4y \)[/tex] subject to the given constraints, we follow these steps:
1. Identify the Constraints:
[tex]\[ \begin{array}{l} x \geq 0 \\ y \geq 0 \\ 2x + 10y \leq 100 \\ 9x + y \leq 54 \end{array} \][/tex]
2. Determine the Feasible Region:
First, let's write down the equality versions of the constraints to find the boundary lines:
[tex]\[ \begin{aligned} &2x + 10y = 100 \quad &(i) \\ &9x + y = 54 \quad &(ii) \end{aligned} \][/tex]
3. Find the Intersection Points (Vertices):
To find where these lines intersect with each other and the axes:
[tex]\[ \begin{aligned} & \text{Intersection with} \, x \geq 0 \, \text{and} \, y \geq 0 \, \text{(Axes):} \\ & \text{For} \, x = 0: \, \\ &\quad 2(0) + 10y = 100 \implies y = 10 \\ &\quad 9(0) + y = 54 \implies y = 54 \quad (\text{not in the feasible region}) \\ & \text{For} \, y = 0: \, \\ &\quad 2x + 10(0) = 100 \implies x = 50 \quad (\text{not in the feasible region}) \\ &\quad 9x + 0 = 54 \implies x = 6 \\ \\ & \text{Intersection of the boundary lines:} \\ & \begin{cases} 2x + 10y = 100 \\ 9x + y = 54 \end{cases} \\ & \text{Multiply the second equation by 10 and subtract:} \\ & \quad 20x + 100y = 1000 \\ & \quad 90x + 10y = 540 \\ & \quad 20x + 100y - (90x + 10y) = 1000 - 540 \\ & \quad -70x + 90y = 460 \implies y = 9 - \text{ (substitute back to find x):} \\ \\ & \quad 9(5) + 9 = 54 \implies x = 5, y = 9 \end{aligned} \][/tex]
4. List the Vertices of the Feasible Region:
- Point (0, 0)
- Point (0, 10)
- Point (5, 9)
- Point (6, 0)
5. Evaluate the Objective Function at Each Vertex:
[tex]\[ \begin{aligned} &f(0, 0) = 10(0) + 4(0) = 0 \\ &f(0, 10) = 10(0) + 4(10) = 40 \\ &f(5, 9) = 10(5) + 4(9) = 50 + 36 = 86 \\ &f(6, 0) = 10(6) + 4(0) = 60 \\ \end{aligned} \][/tex]
6. Identify the Maximum and Minimum Values:
- The maximum value is [tex]\( 86 \)[/tex] at the point [tex]\( (5, 9) \)[/tex].
- The minimum value is [tex]\( 0 \)[/tex] at the point [tex]\( (0, 0) \)[/tex].
So, the maximum value of the objective function occurs at [tex]\( (5,9) \)[/tex] with a value of [tex]\( 86 \)[/tex], and the minimum value occurs at [tex]\( (0,0) \)[/tex] with a value of [tex]\( 0 \)[/tex].
1. Identify the Constraints:
[tex]\[ \begin{array}{l} x \geq 0 \\ y \geq 0 \\ 2x + 10y \leq 100 \\ 9x + y \leq 54 \end{array} \][/tex]
2. Determine the Feasible Region:
First, let's write down the equality versions of the constraints to find the boundary lines:
[tex]\[ \begin{aligned} &2x + 10y = 100 \quad &(i) \\ &9x + y = 54 \quad &(ii) \end{aligned} \][/tex]
3. Find the Intersection Points (Vertices):
To find where these lines intersect with each other and the axes:
[tex]\[ \begin{aligned} & \text{Intersection with} \, x \geq 0 \, \text{and} \, y \geq 0 \, \text{(Axes):} \\ & \text{For} \, x = 0: \, \\ &\quad 2(0) + 10y = 100 \implies y = 10 \\ &\quad 9(0) + y = 54 \implies y = 54 \quad (\text{not in the feasible region}) \\ & \text{For} \, y = 0: \, \\ &\quad 2x + 10(0) = 100 \implies x = 50 \quad (\text{not in the feasible region}) \\ &\quad 9x + 0 = 54 \implies x = 6 \\ \\ & \text{Intersection of the boundary lines:} \\ & \begin{cases} 2x + 10y = 100 \\ 9x + y = 54 \end{cases} \\ & \text{Multiply the second equation by 10 and subtract:} \\ & \quad 20x + 100y = 1000 \\ & \quad 90x + 10y = 540 \\ & \quad 20x + 100y - (90x + 10y) = 1000 - 540 \\ & \quad -70x + 90y = 460 \implies y = 9 - \text{ (substitute back to find x):} \\ \\ & \quad 9(5) + 9 = 54 \implies x = 5, y = 9 \end{aligned} \][/tex]
4. List the Vertices of the Feasible Region:
- Point (0, 0)
- Point (0, 10)
- Point (5, 9)
- Point (6, 0)
5. Evaluate the Objective Function at Each Vertex:
[tex]\[ \begin{aligned} &f(0, 0) = 10(0) + 4(0) = 0 \\ &f(0, 10) = 10(0) + 4(10) = 40 \\ &f(5, 9) = 10(5) + 4(9) = 50 + 36 = 86 \\ &f(6, 0) = 10(6) + 4(0) = 60 \\ \end{aligned} \][/tex]
6. Identify the Maximum and Minimum Values:
- The maximum value is [tex]\( 86 \)[/tex] at the point [tex]\( (5, 9) \)[/tex].
- The minimum value is [tex]\( 0 \)[/tex] at the point [tex]\( (0, 0) \)[/tex].
So, the maximum value of the objective function occurs at [tex]\( (5,9) \)[/tex] with a value of [tex]\( 86 \)[/tex], and the minimum value occurs at [tex]\( (0,0) \)[/tex] with a value of [tex]\( 0 \)[/tex].