Find the maximum and minimum values of the objective function [tex]f(x, y)[/tex] and for what values of [tex]x[/tex] and [tex]y[/tex] they occur, subject to the given constraints.

[tex]\[
\begin{aligned}
&f(x, y) = 10x + 4y \\
&x \geq 0 \\
&y \geq 0 \\
&2x + 10y \leq 100 \\
&9x + y \leq 54
\end{aligned}
\][/tex]

A. [tex]\max[/tex] at [tex](5,9)=86[/tex], [tex]\min[/tex] at [tex](0,0)=0[/tex]
B. [tex]\max[/tex] at [tex](6,12)=108[/tex], [tex]\min[/tex] at [tex](0,0)=0[/tex]
C. [tex]\max[/tex] at [tex](0,10)=40[/tex], [tex]\min[/tex] at [tex](0,0)=0[/tex]
D. [tex]\max[/tex] at [tex](6,0)=60[/tex], [tex]\min[/tex] at [tex](0,0)=0[/tex]



Answer :

To find the maximum and minimum values of the objective function [tex]\( f(x, y) = 10x + 4y \)[/tex] subject to the given constraints, we follow these steps:

1. Identify the Constraints:
[tex]\[ \begin{array}{l} x \geq 0 \\ y \geq 0 \\ 2x + 10y \leq 100 \\ 9x + y \leq 54 \end{array} \][/tex]

2. Determine the Feasible Region:
First, let's write down the equality versions of the constraints to find the boundary lines:
[tex]\[ \begin{aligned} &2x + 10y = 100 \quad &(i) \\ &9x + y = 54 \quad &(ii) \end{aligned} \][/tex]

3. Find the Intersection Points (Vertices):
To find where these lines intersect with each other and the axes:
[tex]\[ \begin{aligned} & \text{Intersection with} \, x \geq 0 \, \text{and} \, y \geq 0 \, \text{(Axes):} \\ & \text{For} \, x = 0: \, \\ &\quad 2(0) + 10y = 100 \implies y = 10 \\ &\quad 9(0) + y = 54 \implies y = 54 \quad (\text{not in the feasible region}) \\ & \text{For} \, y = 0: \, \\ &\quad 2x + 10(0) = 100 \implies x = 50 \quad (\text{not in the feasible region}) \\ &\quad 9x + 0 = 54 \implies x = 6 \\ \\ & \text{Intersection of the boundary lines:} \\ & \begin{cases} 2x + 10y = 100 \\ 9x + y = 54 \end{cases} \\ & \text{Multiply the second equation by 10 and subtract:} \\ & \quad 20x + 100y = 1000 \\ & \quad 90x + 10y = 540 \\ & \quad 20x + 100y - (90x + 10y) = 1000 - 540 \\ & \quad -70x + 90y = 460 \implies y = 9 - \text{ (substitute back to find x):} \\ \\ & \quad 9(5) + 9 = 54 \implies x = 5, y = 9 \end{aligned} \][/tex]

4. List the Vertices of the Feasible Region:
- Point (0, 0)
- Point (0, 10)
- Point (5, 9)
- Point (6, 0)

5. Evaluate the Objective Function at Each Vertex:
[tex]\[ \begin{aligned} &f(0, 0) = 10(0) + 4(0) = 0 \\ &f(0, 10) = 10(0) + 4(10) = 40 \\ &f(5, 9) = 10(5) + 4(9) = 50 + 36 = 86 \\ &f(6, 0) = 10(6) + 4(0) = 60 \\ \end{aligned} \][/tex]

6. Identify the Maximum and Minimum Values:
- The maximum value is [tex]\( 86 \)[/tex] at the point [tex]\( (5, 9) \)[/tex].
- The minimum value is [tex]\( 0 \)[/tex] at the point [tex]\( (0, 0) \)[/tex].

So, the maximum value of the objective function occurs at [tex]\( (5,9) \)[/tex] with a value of [tex]\( 86 \)[/tex], and the minimum value occurs at [tex]\( (0,0) \)[/tex] with a value of [tex]\( 0 \)[/tex].