Answer :
Cramer's rule is a mathematical theorem used to solve a system of linear equations with as many equations as unknowns. Let’s denote:
- [tex]\( x \)[/tex] as the cost per kg of sugar,
- [tex]\( y \)[/tex] as the cost per kg of tea.
We are given the following two linear equations:
1. [tex]\( 17x + 4y = 1110 \)[/tex]
2. [tex]\( 8x + 2y = 540 \)[/tex]
We need to determine [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule.
### Step 1: Form the coefficient matrix and the constants matrix.
The coefficient matrix [tex]\( A \)[/tex] is:
[tex]\[ A = \begin{pmatrix} 17 & 4 \\ 8 & 2 \end{pmatrix} \][/tex]
The constants matrix [tex]\( B \)[/tex] is:
[tex]\[ B = \begin{pmatrix} 1110 \\ 540 \end{pmatrix} \][/tex]
### Step 2: Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex].
[tex]\[ \text{det}(A) = \begin{vmatrix} 17 & 4 \\ 8 & 2 \end{vmatrix} = (17 \cdot 2) - (4 \cdot 8) = 34 - 32 = 2 \][/tex]
### Step 3: Form matrices [tex]\( A1 \)[/tex] and [tex]\( A2 \)[/tex] to calculate the determinants for Cramer's rule.
Matrix [tex]\( A1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the constants from [tex]\( B \)[/tex]:
[tex]\[ A1 = \begin{pmatrix} 1110 & 4 \\ 540 & 2 \end{pmatrix} \][/tex]
Matrix [tex]\( A2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the constants from [tex]\( B \)[/tex]:
[tex]\[ A2 = \begin{pmatrix} 17 & 1110 \\ 8 & 540 \end{pmatrix} \][/tex]
### Step 4: Calculate the determinants of [tex]\( A1 \)[/tex] and [tex]\( A2 \)[/tex].
[tex]\[ \text{det}(A1) = \begin{vmatrix} 1110 & 4 \\ 540 & 2 \end{vmatrix} = (1110 \cdot 2) - (4 \cdot 540) = 2220 - 2160 = 60 \][/tex]
[tex]\[ \text{det}(A2) = \begin{vmatrix} 17 & 1110 \\ 8 & 540 \end{vmatrix} = (17 \cdot 540) - (1110 \cdot 8) = 9180 - 8880 = 300 \][/tex]
### Step 5: Apply Cramer's rule to find [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ x = \frac{\text{det}(A1)}{\text{det}(A)} = \frac{60}{2} = 30 \][/tex]
[tex]\[ y = \frac{\text{det}(A2)}{\text{det}(A)} = \frac{300}{2} = 150 \][/tex]
### Conclusion:
The cost per kg of sugar is Rs. 30 and the cost per kg of tea is Rs. 150.
- [tex]\( x \)[/tex] as the cost per kg of sugar,
- [tex]\( y \)[/tex] as the cost per kg of tea.
We are given the following two linear equations:
1. [tex]\( 17x + 4y = 1110 \)[/tex]
2. [tex]\( 8x + 2y = 540 \)[/tex]
We need to determine [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule.
### Step 1: Form the coefficient matrix and the constants matrix.
The coefficient matrix [tex]\( A \)[/tex] is:
[tex]\[ A = \begin{pmatrix} 17 & 4 \\ 8 & 2 \end{pmatrix} \][/tex]
The constants matrix [tex]\( B \)[/tex] is:
[tex]\[ B = \begin{pmatrix} 1110 \\ 540 \end{pmatrix} \][/tex]
### Step 2: Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex].
[tex]\[ \text{det}(A) = \begin{vmatrix} 17 & 4 \\ 8 & 2 \end{vmatrix} = (17 \cdot 2) - (4 \cdot 8) = 34 - 32 = 2 \][/tex]
### Step 3: Form matrices [tex]\( A1 \)[/tex] and [tex]\( A2 \)[/tex] to calculate the determinants for Cramer's rule.
Matrix [tex]\( A1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the constants from [tex]\( B \)[/tex]:
[tex]\[ A1 = \begin{pmatrix} 1110 & 4 \\ 540 & 2 \end{pmatrix} \][/tex]
Matrix [tex]\( A2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the constants from [tex]\( B \)[/tex]:
[tex]\[ A2 = \begin{pmatrix} 17 & 1110 \\ 8 & 540 \end{pmatrix} \][/tex]
### Step 4: Calculate the determinants of [tex]\( A1 \)[/tex] and [tex]\( A2 \)[/tex].
[tex]\[ \text{det}(A1) = \begin{vmatrix} 1110 & 4 \\ 540 & 2 \end{vmatrix} = (1110 \cdot 2) - (4 \cdot 540) = 2220 - 2160 = 60 \][/tex]
[tex]\[ \text{det}(A2) = \begin{vmatrix} 17 & 1110 \\ 8 & 540 \end{vmatrix} = (17 \cdot 540) - (1110 \cdot 8) = 9180 - 8880 = 300 \][/tex]
### Step 5: Apply Cramer's rule to find [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ x = \frac{\text{det}(A1)}{\text{det}(A)} = \frac{60}{2} = 30 \][/tex]
[tex]\[ y = \frac{\text{det}(A2)}{\text{det}(A)} = \frac{300}{2} = 150 \][/tex]
### Conclusion:
The cost per kg of sugar is Rs. 30 and the cost per kg of tea is Rs. 150.