Answer :

To determine if the quadratic expression [tex]\(1 + 14g + 49g^2\)[/tex] is a perfect square, we need to see if it can be written in the form [tex]\((ag + b)^2\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants.

1. Original Expression:
[tex]\[ 1 + 14g + 49g^2 \][/tex]

2. General Form of a Perfect Square:
[tex]\((ag + b)^2 = a^2g^2 + 2abg + b^2\)[/tex]

By comparing both expressions, we can identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a^2g^2\)[/tex] should match [tex]\(49g^2\)[/tex]
- [tex]\(2abg\)[/tex] should match [tex]\(14g\)[/tex]
- [tex]\(b^2\)[/tex] should match the constant term [tex]\(1\)[/tex]

3. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

From [tex]\(49g^2\)[/tex], we have:
[tex]\[ a^2 = 49 \implies a = 7 \text{ (since } 7^2 = 49\text{)} \][/tex]

From [tex]\(14g\)[/tex], we have:
[tex]\[ 2ab = 14 \implies 2(7)b = 14 \implies 14b = 14 \implies b = 1 \][/tex]

From [tex]\(1\)[/tex], we have:
[tex]\[ b^2 = 1 \implies b = 1 \text{ (since } 1^2 = 1\text{)} \][/tex]

4. Construct the Perfect Square Form:

Now that we have [tex]\(a = 7\)[/tex] and [tex]\(b = 1\)[/tex], we can write the factored form of the expression:
[tex]\[ 7g + 1 \][/tex]

Therefore, the perfect square of the expression is:
[tex]\[ (7g + 1)^2 \][/tex]

Thus, the factorization of [tex]\(1 + 14g + 49g^2\)[/tex] is [tex]\((7g + 1)^2\)[/tex].