Write the following expression using the fewest possible terms:

[tex]\[
(-2x - 15) + (16 + 9x)
\][/tex]

A. [tex]\(7x + 1\)[/tex]

B. [tex]\(7x + (-1)\)[/tex]

C. [tex]\(11x + 31\)[/tex]

D. [tex]\(11x + (-31)\)[/tex]



Answer :

Sure, let's simplify the given expression [tex]\((-2x - 15) + (16 + 9x)\)[/tex] step-by-step.

1. Write down the given expression:
[tex]\((-2x - 15) + (16 + 9x)\)[/tex]

2. Combine the like terms.
- Like terms involving [tex]\(x\)[/tex]:
[tex]\(-2x + 9x\)[/tex]
- Like constant terms:
[tex]\(-15 + 16\)[/tex]

3. Simplify each group of like terms:
- For the [tex]\(x\)[/tex] terms:
[tex]\(-2x + 9x = 7x\)[/tex]
- For the constants:
[tex]\(-15 + 16 = 1\)[/tex]

4. Combine the simplified terms:
- [tex]\(7x + 1\)[/tex]

So, the expression [tex]\((-2x - 15) + (16 + 9x)\)[/tex] simplifies to:

[tex]\[ 7x + 1 \][/tex]

Therefore, the correct option is [tex]\(7x + 1\)[/tex].