Answer :
To determine the domain and range of the function described by the table, let's follow these steps:
1. Understand the Table: The table provided lists pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. Here are those values in a more readable format:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
2. List the Domain: The domain of a function consists of all the input [tex]\( x \)[/tex]-values. Given the pairs from the table, we identify these [tex]\( x \)[/tex]-values:
[tex]\[ x = \left\{ \frac{1}{125}, \frac{1}{25}, \frac{1}{5}, 1, 5, 25, 125 \right\} \][/tex]
To make it more readable, we can convert those fractions to decimals where appropriate:
[tex]\[ x = \left\{ \frac{1}{125} = 0.008, \frac{1}{25} = 0.04, \frac{1}{5} = 0.2, 1, 5, 25, 125 \right\} \][/tex]
Therefore, the domain is:
[tex]\[ \text{Domain} = \{0.008, 0.04, 0.2, 1, 5, 25, 125\} \][/tex]
3. List the Range: The range of a function consists of all the output [tex]\( y \)[/tex]-values. The [tex]\( y \)[/tex]-values given in the table are:
[tex]\[ y = \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]
Thus, the range of the function is:
[tex]\[ \text{Range} = \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]
4. Graph the Function: To graph the function, you would plot each [tex]\( x \)[/tex]-value against its corresponding [tex]\( y \)[/tex]-value on a coordinate plane. The pairs you'll plot are:
[tex]\[ (0.008, -3), (0.04, -2), (0.2, -1), (1, 0), (5, 1), (25, 2), (125, 3) \][/tex]
When plotting, you mark each of these ordered pairs on the graph, ensuring to accurately represent both the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-axes values.
In Summary:
- Domain: \{0.008, 0.04, 0.2, 1, 5, 25, 125\}
- Range: \{-3, -2, -1, 0, 1, 2, 3\}
These are the set of all possible input values (domain) and all possible output values (range) for the function.
1. Understand the Table: The table provided lists pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. Here are those values in a more readable format:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
2. List the Domain: The domain of a function consists of all the input [tex]\( x \)[/tex]-values. Given the pairs from the table, we identify these [tex]\( x \)[/tex]-values:
[tex]\[ x = \left\{ \frac{1}{125}, \frac{1}{25}, \frac{1}{5}, 1, 5, 25, 125 \right\} \][/tex]
To make it more readable, we can convert those fractions to decimals where appropriate:
[tex]\[ x = \left\{ \frac{1}{125} = 0.008, \frac{1}{25} = 0.04, \frac{1}{5} = 0.2, 1, 5, 25, 125 \right\} \][/tex]
Therefore, the domain is:
[tex]\[ \text{Domain} = \{0.008, 0.04, 0.2, 1, 5, 25, 125\} \][/tex]
3. List the Range: The range of a function consists of all the output [tex]\( y \)[/tex]-values. The [tex]\( y \)[/tex]-values given in the table are:
[tex]\[ y = \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]
Thus, the range of the function is:
[tex]\[ \text{Range} = \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]
4. Graph the Function: To graph the function, you would plot each [tex]\( x \)[/tex]-value against its corresponding [tex]\( y \)[/tex]-value on a coordinate plane. The pairs you'll plot are:
[tex]\[ (0.008, -3), (0.04, -2), (0.2, -1), (1, 0), (5, 1), (25, 2), (125, 3) \][/tex]
When plotting, you mark each of these ordered pairs on the graph, ensuring to accurately represent both the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-axes values.
In Summary:
- Domain: \{0.008, 0.04, 0.2, 1, 5, 25, 125\}
- Range: \{-3, -2, -1, 0, 1, 2, 3\}
These are the set of all possible input values (domain) and all possible output values (range) for the function.