Answer :
Sure, let's apply the distributive property to the given expression step-by-step:
Given expression:
[tex]\[ (3 - 8y) \cdot (-2.5) \][/tex]
Step 1: Distribute [tex]\(-2.5\)[/tex] to each term inside the parentheses.
First, multiply [tex]\(-2.5\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[ 3 \cdot (-2.5) = -7.5 \][/tex]
Second, multiply [tex]\(-2.5\)[/tex] by [tex]\(-8y\)[/tex]:
[tex]\[ -8y \cdot (-2.5) = 20.0y \][/tex]
Step 2: Combine the results of the distributions.
[tex]\[ -7.5 + 20.0y \text{ or } 20.0y - 7.5 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 20.0y - 7.5 \][/tex]
Given expression:
[tex]\[ (3 - 8y) \cdot (-2.5) \][/tex]
Step 1: Distribute [tex]\(-2.5\)[/tex] to each term inside the parentheses.
First, multiply [tex]\(-2.5\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[ 3 \cdot (-2.5) = -7.5 \][/tex]
Second, multiply [tex]\(-2.5\)[/tex] by [tex]\(-8y\)[/tex]:
[tex]\[ -8y \cdot (-2.5) = 20.0y \][/tex]
Step 2: Combine the results of the distributions.
[tex]\[ -7.5 + 20.0y \text{ or } 20.0y - 7.5 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 20.0y - 7.5 \][/tex]