1. Write [tex]$0 . \overline{2}$[/tex] as a fraction.

Let [tex][tex]$x =$[/tex] \ \square[/tex]

[tex]
\begin{aligned}
10x & = \ 2.2\overline{2} \\
10x - x & = \ 2.2\overline{2} - 0.\overline{2} \\
9x & = \ 2
\end{aligned}
[/tex]

[tex]x = \ \square[/tex]

So [tex]$0 . \overline{2}$[/tex] is equal to [tex]\dfrac{2}{9}[/tex].



Answer :

Certainly! Let's convert the repeating decimal [tex]\(0.\overline{2}\)[/tex] into a fraction step-by-step.

1. Let [tex]\( x = 0.\overline{2} \)[/tex]

2. Write the repeating decimal as an equation:
[tex]\[ x = 0.2222\ldots \][/tex]

3. Multiply both sides of this equation by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 2.2222\ldots \][/tex]

4. Now you have two equations:
[tex]\[ \begin{aligned} x &= 0.2222\ldots \quad \quad \quad (1) \\ 10x &= 2.2222\ldots \quad \quad \,\, (2) \end{aligned} \][/tex]

5. Subtract the first equation from the second equation:
[tex]\[ 10x - x = 2.2222\ldots - 0.2222\ldots \][/tex]

6. This simplifies to:
[tex]\[ 9x = 2 \][/tex]

7. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{2}{9} \][/tex]

So, the repeating decimal [tex]\( 0.\overline{2} \)[/tex] is equal to [tex]\(\frac{2}{9}\)[/tex] as a fraction.