Answer :
Sure, let's simplify the expression step-by-step:
Given expression:
[tex]\[ -3 + 10 - 8(5 - 2) \][/tex]
Step 1: Simplify the expression inside the parentheses:
[tex]\[ 5 - 2 = 3 \][/tex]
So the expression now becomes:
[tex]\[ -3 + 10 - 8 \cdot 3 \][/tex]
Step 2: Perform the multiplication:
[tex]\[ 8 \cdot 3 = 24 \][/tex]
So the expression now becomes:
[tex]\[ -3 + 10 - 24 \][/tex]
Step 3: Simplify the expression from left to right:
First, add [tex]\( -3 \)[/tex] and [tex]\( 10 \)[/tex]:
[tex]\[ -3 + 10 = 7 \][/tex]
So the expression now becomes:
[tex]\[ 7 - 24 \][/tex]
Next, subtract [tex]\( 24 \)[/tex] from [tex]\( 7 \)[/tex]:
[tex]\[ 7 - 24 = -17 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -17 \][/tex]
Thus, the final result is:
[tex]\[ \boxed{-17} \][/tex]
Given expression:
[tex]\[ -3 + 10 - 8(5 - 2) \][/tex]
Step 1: Simplify the expression inside the parentheses:
[tex]\[ 5 - 2 = 3 \][/tex]
So the expression now becomes:
[tex]\[ -3 + 10 - 8 \cdot 3 \][/tex]
Step 2: Perform the multiplication:
[tex]\[ 8 \cdot 3 = 24 \][/tex]
So the expression now becomes:
[tex]\[ -3 + 10 - 24 \][/tex]
Step 3: Simplify the expression from left to right:
First, add [tex]\( -3 \)[/tex] and [tex]\( 10 \)[/tex]:
[tex]\[ -3 + 10 = 7 \][/tex]
So the expression now becomes:
[tex]\[ 7 - 24 \][/tex]
Next, subtract [tex]\( 24 \)[/tex] from [tex]\( 7 \)[/tex]:
[tex]\[ 7 - 24 = -17 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -17 \][/tex]
Thus, the final result is:
[tex]\[ \boxed{-17} \][/tex]