Answer :
To find the supplementary angle of a given angle, recall that the sum of supplementary angles is always [tex]\(180^\circ\)[/tex].
Here, the given angle is [tex]\(110^\circ\)[/tex].
Step-by-step, we will determine the supplementary angle:
1. Start with the total measure of supplementary angles, which is [tex]\(180^\circ\)[/tex].
2. Subtract the given angle from [tex]\(180^\circ\)[/tex]:
[tex]\[ 180^\circ - 110^\circ = 70^\circ \][/tex]
So, the supplementary angle of [tex]\(110^\circ\)[/tex] is [tex]\(70^\circ\)[/tex].
Now, let's match this result with the options provided:
- [tex]\(70^\circ\)[/tex]
- [tex]\(73^\circ\)[/tex]
- [tex]\(67^\circ\)[/tex]
- [tex]\(85^\circ\)[/tex]
The correct option is [tex]\(70^\circ\)[/tex].
Here, the given angle is [tex]\(110^\circ\)[/tex].
Step-by-step, we will determine the supplementary angle:
1. Start with the total measure of supplementary angles, which is [tex]\(180^\circ\)[/tex].
2. Subtract the given angle from [tex]\(180^\circ\)[/tex]:
[tex]\[ 180^\circ - 110^\circ = 70^\circ \][/tex]
So, the supplementary angle of [tex]\(110^\circ\)[/tex] is [tex]\(70^\circ\)[/tex].
Now, let's match this result with the options provided:
- [tex]\(70^\circ\)[/tex]
- [tex]\(73^\circ\)[/tex]
- [tex]\(67^\circ\)[/tex]
- [tex]\(85^\circ\)[/tex]
The correct option is [tex]\(70^\circ\)[/tex].