Solve on the interval [tex]$[0, 2\pi)$[/tex]:

[tex]\[ 1 + \cos \theta = \frac{1}{2} \][/tex]

A. [tex]\(\frac{\pi}{3}, \frac{5\pi}{3}\)[/tex]

B. [tex]\(\frac{\pi}{6}, \frac{5\pi}{6}\)[/tex]

C. [tex]\(\frac{7\pi}{6}, \frac{11\pi}{6}\)[/tex]

D. [tex]\(\frac{2\pi}{3}, \frac{4\pi}{3}\)[/tex]



Answer :

To solve the equation [tex]\( 1 + \cos \theta = \frac{1}{2} \)[/tex] on the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:

1. Isolate [tex]\(\cos \theta\)[/tex]:

[tex]\[ 1 + \cos \theta = \frac{1}{2} \][/tex]

Subtract 1 from both sides of the equation:

[tex]\[ \cos \theta = \frac{1}{2} - 1 \][/tex]

Simplify the right-hand side:

[tex]\[ \cos \theta = -\frac{1}{2} \][/tex]

2. Find the general solutions to [tex]\(\cos \theta = -\frac{1}{2}\)[/tex]:

- The cosine function achieves the value [tex]\(-\frac{1}{2}\)[/tex] at specific angles within one full rotation [tex]\([0, 2\pi)\)[/tex].
- Cosine of [tex]\(\theta\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex] at:
[tex]\[ \theta = \frac{2\pi}{3} \quad \text{(in the second quadrant)}, \][/tex]
[tex]\[ \theta = \frac{4\pi}{3} \quad \text{(in the third quadrant)}. \][/tex]

3. Verify the angles are within the correct interval:

Both angles [tex]\( \frac{2\pi}{3} \)[/tex] and [tex]\( \frac{4\pi}{3} \)[/tex] are within the interval [tex]\([0, 2\pi)\)[/tex]. Therefore, they are valid solutions.

4. Summarize the solutions:

The solutions for the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{2\pi}{3} \quad \text{and} \quad \theta = \frac{4\pi}{3} \][/tex]

Thus, the correct answer is:

D. [tex]\(\frac{2\pi}{3}, \frac{4\pi}{3}\)[/tex]