noboa7
Answered

Which expression is equivalent to [tex]\frac{(5ab)^3}{30a^{-6}b^{-7}}[/tex]? Assume [tex]a \neq 0[/tex], [tex]b \neq 0[/tex].

A. [tex]\frac{a^7 b^{10}}{6}[/tex]

B. [tex]\frac{125a^{18}b^{21}}{30}[/tex]

C. [tex]\frac{25a^3b^4}{6}[/tex]

D. [tex]\frac{25a^9b^{10}}{6}[/tex]



Answer :

To solve the given expression [tex]\(\frac{(5 a b)^3}{30 a^{-6} b^{-7}}\)[/tex], we can break it down into smaller steps:

1. Calculate the numerator: [tex]\((5ab)^3\)[/tex]
[tex]\[ (5ab)^3 = 5^3 \cdot a^3 \cdot b^3 = 125a^3b^3 \][/tex]

2. Simplify the denominator: [tex]\(30a^{-6}b^{-7}\)[/tex]
[tex]\[ 30a^{-6}b^{-7} = 30 \cdot \frac{1}{a^6} \cdot \frac{1}{b^7} = \frac{30}{a^6 b^7} \][/tex]

3. Combine the numerator and the denominator:
[tex]\[ \frac{(5 a b)^3}{30 a^{-6} b^{-7}} = \frac{125a^3b^3}{\frac{30}{a^6 b^7}} = 125a^3b^3 \cdot \frac{a^6b^7}{30} = \frac{125a^3b^3 \cdot a^6b^7}{30} \][/tex]

4. Simplify the expression:
[tex]\[ \frac{125a^3b^3 \cdot a^6b^7}{30} = \frac{125 \cdot a^{3+6} \cdot b^{3+7}}{30} = \frac{125a^9b^{10}}{30} \][/tex]

5. Reduce the fraction if possible:
[tex]\[ \frac{125a^9b^{10}}{30} \][/tex]
Since [tex]\(125\)[/tex] and [tex]\(30\)[/tex] have a common factor of [tex]\(5\)[/tex], we can simplify the fraction:
[tex]\[ \frac{125}{30} = \frac{25}{6} \][/tex]

So, putting it all together:
[tex]\[ \frac{125a^9b^{10}}{30} = \frac{25a^9b^{10}}{6} \][/tex]

Therefore, the equivalent expression is:
[tex]\[ \frac{25 a^9 b^{10}}{6} \][/tex]

Among the given choices, the correct option is:

[tex]\(\boxed{\frac{25 a^9 b^{10}}{6}}\)[/tex]

The answer is:
[tex]\(\frac{25 a^9 b^{10}}{6}\)[/tex] which corresponds to option [tex]\(4\)[/tex].