For what value of [tex]\(c\)[/tex] is the relation a function?

[tex]\[
\{(2,8), (12,3), (c,4), (-1,8), (0,3)\}
\][/tex]

A. [tex]\(-1\)[/tex]
B. [tex]\(1\)[/tex]
C. [tex]\(2\)[/tex]
D. [tex]\(12\)[/tex]



Answer :

To determine for which value of [tex]\( c \)[/tex] the given relation is a function, we need to recall the definition of a function. In mathematics, a relation is a function if every input (or [tex]\( x \)[/tex]-value) maps to exactly one output (or [tex]\( y \)[/tex]-value).

Given the relation:
[tex]\[ \{(2,8), (12,3), (c,4), (-1,8), (0,3)\} \][/tex]

We will check to ensure that each [tex]\( x \)[/tex]-value is unique. We need to pick a value of [tex]\( c \)[/tex] such that each [tex]\( x \)[/tex]-value (input) appears only once.

Let's list the non-[tex]\( c \)[/tex] [tex]\( x \)[/tex]-values from the given pairs:
[tex]\[ x \text{-values: } 2, 12, -1, 0 \][/tex]

To ensure that our relation is a function, [tex]\( c \)[/tex] must not be equal to any of these existing [tex]\( x \)[/tex]-values. Thus, we can't use [tex]\( c = 2, 12, -1, \)[/tex] or [tex]\( 0 \)[/tex].

Examining the provided options:
- [tex]\( c = -1 \)[/tex]: This is not valid because [tex]\(-1\)[/tex] is already an [tex]\( x \)[/tex]-value.
- [tex]\( c = 1 \)[/tex]: This is valid because [tex]\( 1 \)[/tex] is not among the existing [tex]\( x \)[/tex]-values.
- [tex]\( c = 2 \)[/tex]: This is not valid because [tex]\( 2 \)[/tex] is already an [tex]\( x \)[/tex]-value.
- [tex]\( c = 12 \)[/tex]: This is not valid because [tex]\( 12 \)[/tex] is already an [tex]\( x \)[/tex]-value.

Thus, the only value for [tex]\( c \)[/tex] that ensures all [tex]\( x \)[/tex]-values are unique, making the relation a function, is [tex]\( c = 1 \)[/tex].

So, the value of [tex]\( c \)[/tex] for which the relation is a function is:
[tex]\[ \boxed{1} \][/tex]