Answer :
Certainly! Let's go through the process of multiplying the two fractions step-by-step.
Given the fractions:
[tex]\[ \frac{4}{7} \times \frac{5}{9} \][/tex]
1. Multiply the Numerators:
- The numerator of the first fraction is 4.
- The numerator of the second fraction is 5.
- Multiply these numerators:
[tex]\[ 4 \times 5 = 20 \][/tex]
2. Multiply the Denominators:
- The denominator of the first fraction is 7.
- The denominator of the second fraction is 9.
- Multiply these denominators:
[tex]\[ 7 \times 9 = 63 \][/tex]
3. Form the Resulting Fraction:
- Place the product of the numerators over the product of the denominators:
[tex]\[\frac{20}{63}\][/tex]
So, the product of the two fractions [tex]\( \frac{4}{7} \times \frac{5}{9} \)[/tex] is:
[tex]\[ \frac{20}{63} \][/tex]
Given the fractions:
[tex]\[ \frac{4}{7} \times \frac{5}{9} \][/tex]
1. Multiply the Numerators:
- The numerator of the first fraction is 4.
- The numerator of the second fraction is 5.
- Multiply these numerators:
[tex]\[ 4 \times 5 = 20 \][/tex]
2. Multiply the Denominators:
- The denominator of the first fraction is 7.
- The denominator of the second fraction is 9.
- Multiply these denominators:
[tex]\[ 7 \times 9 = 63 \][/tex]
3. Form the Resulting Fraction:
- Place the product of the numerators over the product of the denominators:
[tex]\[\frac{20}{63}\][/tex]
So, the product of the two fractions [tex]\( \frac{4}{7} \times \frac{5}{9} \)[/tex] is:
[tex]\[ \frac{20}{63} \][/tex]
Answer:
[tex]\dfrac{20}{63}[/tex]
Step-by-step explanation:
We can execute the multiplication of fractions:
[tex]\dfrac{4}{7} \times \dfrac{5}{9}[/tex]
by multiplying the numerators and denominators:
[tex]=\dfrac{4 \times 5}{7\times 9}[/tex]
[tex]=\boxed{\dfrac{20}{63}}[/tex]