Answer :
Certainly! Let's solve the given mathematical expression step-by-step.
We are given the expression [tex]\( 2s(s - 4) \)[/tex].
### Step-by-Step Solution:
1. Distribute the 2s:
Multiply [tex]\( 2s \)[/tex] with each term inside the parentheses [tex]\((s - 4)\)[/tex].
[tex]\[ 2s \cdot s - 2s \cdot 4 \][/tex]
2. Simplify Each Term:
- [tex]\( 2s \cdot s \)[/tex] gives [tex]\( 2s^2 \)[/tex]
- [tex]\( 2s \cdot 4 \)[/tex] gives [tex]\( 8s \)[/tex]
Combining these terms, we get:
[tex]\[ 2s^2 - 8s \][/tex]
### Final Expression:
[tex]\[ 2s^2 - 8s \][/tex]
So, the given expression [tex]\( 2s(s - 4) \)[/tex] simplifies to [tex]\( 2s^2 - 8s \)[/tex]. This is the detailed step-by-step solution.
We are given the expression [tex]\( 2s(s - 4) \)[/tex].
### Step-by-Step Solution:
1. Distribute the 2s:
Multiply [tex]\( 2s \)[/tex] with each term inside the parentheses [tex]\((s - 4)\)[/tex].
[tex]\[ 2s \cdot s - 2s \cdot 4 \][/tex]
2. Simplify Each Term:
- [tex]\( 2s \cdot s \)[/tex] gives [tex]\( 2s^2 \)[/tex]
- [tex]\( 2s \cdot 4 \)[/tex] gives [tex]\( 8s \)[/tex]
Combining these terms, we get:
[tex]\[ 2s^2 - 8s \][/tex]
### Final Expression:
[tex]\[ 2s^2 - 8s \][/tex]
So, the given expression [tex]\( 2s(s - 4) \)[/tex] simplifies to [tex]\( 2s^2 - 8s \)[/tex]. This is the detailed step-by-step solution.