Answer :

To solve for [tex]\( x \)[/tex] in the equation [tex]\( 8x - 2y = 48 \)[/tex] when [tex]\( y = 4 \)[/tex], follow these steps:

1. Substitute [tex]\( y \)[/tex] with 4:

The given equation is [tex]\( 8x - 2y = 48 \)[/tex]. Replacing [tex]\( y \)[/tex] with 4, we get:
[tex]\[ 8x - 2(4) = 48 \][/tex]

2. Simplify the equation:

Multiply [tex]\( 2 \)[/tex] by [tex]\( 4 \)[/tex]:
[tex]\[ 8x - 8 = 48 \][/tex]

3. Isolate [tex]\( 8x \)[/tex] on one side of the equation:

Add 8 to both sides to remove the -8 on the left side:
[tex]\[ 8x = 48 + 8 \][/tex]
[tex]\[ 8x = 56 \][/tex]

4. Solve for [tex]\( x \)[/tex]:

Divide both sides of the equation by 8:
[tex]\[ x = \frac{56}{8} \][/tex]
[tex]\[ x = 7 \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 7 \)[/tex]. Therefore, the correct answer is:

7