If [tex]\frac{n^x}{n^y}=n^2[/tex] for all [tex]n \neq 0[/tex], which of the following must be true?

A. [tex]x+y=2[/tex]
B. [tex]x-y=2[/tex]
C. [tex]x \times y=2[/tex]
D. [tex]x \div y=2[/tex]
E. [tex]\sqrt{xy}=2[/tex]



Answer :

Let's analyze the given problem: If [tex]\(\frac{n^x}{n^y}=n^2\)[/tex] for all [tex]\(n \neq 0\)[/tex], which of the options must be true?

We start with the equation:
[tex]\[ \frac{n^x}{n^y} = n^2 \][/tex]

We'll use properties of exponents to simplify the left side of the equation. Recall that [tex]\(\frac{n^x}{n^y} = n^{x-y}\)[/tex]. Thus, we can rewrite the equation as:
[tex]\[ n^{x-y} = n^2 \][/tex]

Given that the bases (both [tex]\(n\)[/tex]) are the same and non-zero, we equate the exponents on both sides of the equation. This gives us:
[tex]\[ x - y = 2 \][/tex]

Therefore, the correct statement is:
[tex]\[ \boxed{x - y = 2} \][/tex]

So, the answer is:
[tex]\[ G. \; x - y = 2 \][/tex]