Answer :

To find the integral [tex]\(\int \frac{x^2 + 1}{x^2} \, dx\)[/tex], let's start by simplifying the integrand.

1. Simplify the integrand:

[tex]\[ \frac{x^2 + 1}{x^2} \][/tex]

We can split the fraction into two separate terms:

[tex]\[ \frac{x^2}{x^2} + \frac{1}{x^2} \][/tex]

2. Simplify each term:

[tex]\[ \frac{x^2}{x^2} = 1 \][/tex]

[tex]\[ \frac{1}{x^2} = x^{-2} \][/tex]

So, the integrand becomes:

[tex]\[ 1 + x^{-2} \][/tex]

3. Integrate each term separately:

- The integral of [tex]\(1\)[/tex] with respect to [tex]\(x\)[/tex] is:

[tex]\[ \int 1 \, dx = x \][/tex]

- The integral of [tex]\(x^{-2}\)[/tex] with respect to [tex]\(x\)[/tex] is:

[tex]\[ \int x^{-2} \, dx \][/tex]

Recall the power rule for integration, [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], for [tex]\(n \neq -1\)[/tex]. In this case, [tex]\(n = -2\)[/tex]:

[tex]\[ \int x^{-2} \, dx = \int x^{-2} \, dx = \frac{x^{-2+1}}{-2+1} = \frac{x^{-1}}{-1} = -x^{-1} = -\frac{1}{x} \][/tex]

4. Combine the results:

[tex]\[ \int \frac{x^2 + 1}{x^2} \, dx = \int (1 + x^{-2}) \, dx = x - \frac{1}{x} \][/tex]

So, the final answer for the integral [tex]\(\int \frac{x^2 + 1}{x^2} \, dx\)[/tex] is:

[tex]\[ x - \frac{1}{x} + C \][/tex]

where [tex]\(C\)[/tex] is the constant of integration.