Example:
(1) Find the binomial expansion of [tex]$(2a - 3b)^4$[/tex]

Solution:
Here, [tex]x = 2a[/tex] and [tex]y = -3b[/tex]

[tex]\[
\begin{array}{l}
(2a - 3b)^4 = \sum_{k=0}^4 \binom{4}{k} (2a)^{4-k} (-3b)^k \\
= \binom{4}{0}(2a)^4 + \binom{4}{1}(2a)^3(-3b) + \binom{4}{2}(2a)^2(-3b)^2 + \binom{4}{3}(2a)(-3b)^3 + \binom{4}{4}(-3b)^4 \\
\end{array}
\][/tex]

Continued



Answer :

Alright, let's solve the problem step by step.

Question: Find the binomial expansion of [tex]\((2a - 18b)^2\)[/tex]

Solution:

Firstly, we recall the binomial expansion formula, which states:
[tex]\[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \][/tex]

In this case, we have [tex]\( (2a - 18b)^2 \)[/tex]. Here, we let [tex]\( x = 2a \)[/tex] and [tex]\( y = -18b \)[/tex], and [tex]\( n = 2 \)[/tex].

Using the binomial expansion:

[tex]\[ (2a - 18b)^2 = \sum_{k=0}^{2} \binom{2}{k} (2a)^{2-k} (-18b)^k \][/tex]

We will calculate each term of the sum separately.

1. For [tex]\( k = 0 \)[/tex]:
[tex]\[ \binom{2}{0} (2a)^{2-0} (-18b)^0 = 1 \cdot (2a)^2 \cdot 1 = 4a^2 \][/tex]

2. For [tex]\( k = 1 \)[/tex]:
[tex]\[ \binom{2}{1} (2a)^{2-1} (-18b)^1 = 2 \cdot (2a)^1 \cdot (-18b) = 2 \cdot 2a \cdot (-18b) = -72ab \][/tex]

3. For [tex]\( k = 2 \)[/tex]:
[tex]\[ \binom{2}{2} (2a)^{2-2} (-18b)^2 = 1 \cdot (2a)^0 \cdot (324b^2) = 324b^2 \][/tex]

Combining all these terms, we get the expansion:
[tex]\[ (2a - 18b)^2 = 4a^2 - 72ab + 324b^2 \][/tex]

So the binomial expansion of [tex]\( (2a - 18b)^2 \)[/tex] is:
[tex]\[ \boxed{4a^2 - 72ab + 324b^2} \][/tex]