Answer :
To determine the value of [tex]\(a\)[/tex] in the quadratic function that fits the given data points, follow these steps:
1. Identify the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Fit a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex] to these data points.
3. Determine the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
From the problem's calculations, we have:
- The quadratic polynomial that fits the data points is represented with coefficients approximately found.
- The coefficient for [tex]\(x^2\)[/tex], denoted as [tex]\(a\)[/tex], is approximately [tex]\(0.25\)[/tex].
4. Match the calculated value of [tex]\(a\)[/tex] with the provided options:
[tex]\[ a \approx 0.25 \][/tex]
5. Identify the correct option:
[tex]\[ \begin{aligned} \text{A. } & \frac{1}{4} \\ \text{B. } & -\frac{1}{2} \\ \text{C. } & -\frac{1}{4} \\ \text{D. } & \frac{1}{2} \end{aligned} \][/tex]
Since [tex]\(a \approx 0.25\)[/tex], it corresponds to [tex]\(\frac{1}{4}\)[/tex].
Therefore, the correct answer is [tex]\(\boxed{A}\)[/tex].
1. Identify the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Fit a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex] to these data points.
3. Determine the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
From the problem's calculations, we have:
- The quadratic polynomial that fits the data points is represented with coefficients approximately found.
- The coefficient for [tex]\(x^2\)[/tex], denoted as [tex]\(a\)[/tex], is approximately [tex]\(0.25\)[/tex].
4. Match the calculated value of [tex]\(a\)[/tex] with the provided options:
[tex]\[ a \approx 0.25 \][/tex]
5. Identify the correct option:
[tex]\[ \begin{aligned} \text{A. } & \frac{1}{4} \\ \text{B. } & -\frac{1}{2} \\ \text{C. } & -\frac{1}{4} \\ \text{D. } & \frac{1}{2} \end{aligned} \][/tex]
Since [tex]\(a \approx 0.25\)[/tex], it corresponds to [tex]\(\frac{1}{4}\)[/tex].
Therefore, the correct answer is [tex]\(\boxed{A}\)[/tex].