Answer :
To determine the number of moles contained in [tex]\(3.131 \times 10^{24}\)[/tex] particles, we need to use Avogadro's number, which is the number of particles in one mole. Avogadro's number is [tex]\(6.022 \times 10^{23}\)[/tex] particles/mole.
Here's a step-by-step solution:
1. Identify the given data:
- Number of particles: [tex]\(3.131 \times 10^{24}\)[/tex]
- Avogadro's number: [tex]\(6.022 \times 10^{23}\)[/tex] particles/mole
2. Set up the formula to convert particles to moles:
[tex]\[ \text{moles} = \frac{\text{particles}}{\text{Avogadro's number}} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{moles} = \frac{3.131 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
4. Perform the division:
[tex]\[ \text{moles} = 5.199269345732314 \][/tex]
5. Round the answer to an appropriate number of significant figures:
The given data ([tex]\(3.131 \times 10^{24}\)[/tex]) has 4 significant figures, so the number of moles should also be rounded to 4 significant figures:
[tex]\[ \text{moles} \approx 5.199 \][/tex]
Analyzing the options given:
- A. 5.199 mol
- B. 18.85 mol
- C. 0.5199 \times 10^{23} mol
- D. 1.885 \times 10^{47} mol
The correct answer is:
A. 5.199 mol
Here's a step-by-step solution:
1. Identify the given data:
- Number of particles: [tex]\(3.131 \times 10^{24}\)[/tex]
- Avogadro's number: [tex]\(6.022 \times 10^{23}\)[/tex] particles/mole
2. Set up the formula to convert particles to moles:
[tex]\[ \text{moles} = \frac{\text{particles}}{\text{Avogadro's number}} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{moles} = \frac{3.131 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
4. Perform the division:
[tex]\[ \text{moles} = 5.199269345732314 \][/tex]
5. Round the answer to an appropriate number of significant figures:
The given data ([tex]\(3.131 \times 10^{24}\)[/tex]) has 4 significant figures, so the number of moles should also be rounded to 4 significant figures:
[tex]\[ \text{moles} \approx 5.199 \][/tex]
Analyzing the options given:
- A. 5.199 mol
- B. 18.85 mol
- C. 0.5199 \times 10^{23} mol
- D. 1.885 \times 10^{47} mol
The correct answer is:
A. 5.199 mol