Answered

Evaluate the following expression when [tex]$a = 5$[/tex] and [tex]$b = 1$[/tex]. Then, plot the resulting value on the provided number line.

[tex]\[
12 + \left[ 2 - \left( 4 \cdot a^2 \right) \right] \div 7 + b
\][/tex]

Use the drawing tool(s) to form the correct answer on the provided number line.



Answer :

Let's evaluate the given expression step-by-step for [tex]\( a = 5 \)[/tex] and [tex]\( b = 1 \)[/tex]. The expression is:

[tex]\[ 12 + \left[ 2 - \left( 4 \cdot a^2 \right) \right] \div 7 + b \][/tex]

### Step 1: Calculate [tex]\( 4 \cdot a^2 \)[/tex]

Given [tex]\( a = 5 \)[/tex],

[tex]\[ 4 \cdot a^2 = 4 \cdot (5^2) = 4 \cdot 25 = 100 \][/tex]

### Step 2: Calculate [tex]\( 2 - (4 \cdot a^2) \)[/tex]

[tex]\[ 2 - 100 = -98 \][/tex]

### Step 3: Divide the result by 7

[tex]\[ -98 \div 7 = -14 \][/tex]

### Step 4: Add [tex]\( 12 \)[/tex] and [tex]\( b \)[/tex] to the result

Given [tex]\( b = 1 \)[/tex],

[tex]\[ 12 + (-14) + 1 = -1 \][/tex]

So, the final result of the expression when [tex]\( a = 5 \)[/tex] and [tex]\( b = 1 \)[/tex] is

[tex]\[ -1 \][/tex]

Now, let's plot this result on the provided number line:

```
<---------------------------|--------------------------->
-10 0 10
```

Marking [tex]\(-1\)[/tex] on the number line:
```
<------|---------------------|---------------------------|-->
-10 -5 0
```

A point should be placed just one tick mark to the left of zero, indicating [tex]\(-1\)[/tex].