Answer :
To find the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] from the given table, we follow a systematic approach.
Given data:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 3 \\ 1 & 5 \\ 2 & 7 \\ 3 & 9 \\ 4 & 11 \\ 5 & 13 \\ \end{array} \][/tex]
1. Determine the rate of change (slope):
Notice how [tex]\( y \)[/tex] changes as [tex]\( x \)[/tex] increases:
[tex]\[ \begin{aligned} 5 - 3 &= 2, \\ 7 - 5 &= 2, \\ 9 - 7 &= 2, \\ 11 - 9 &= 2, \\ 13 - 11 &= 2. \end{aligned} \][/tex]
Each time [tex]\( x \)[/tex] increases by 1, [tex]\( y \)[/tex] increases by 2. Therefore, the slope [tex]\( m \)[/tex] of the line is 2.
2. Identify the y-intercept:
When [tex]\( x = 0 \)[/tex], [tex]\( y = 3 \)[/tex].
The y-intercept ([tex]\( b \)[/tex]) is 3.
3. Form the linear equation:
The general form of a linear equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- Slope [tex]\( m \)[/tex] = 2
- Y-intercept [tex]\( b \)[/tex] = 3
Substituting these values into the equation gives:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]
Given data:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 3 \\ 1 & 5 \\ 2 & 7 \\ 3 & 9 \\ 4 & 11 \\ 5 & 13 \\ \end{array} \][/tex]
1. Determine the rate of change (slope):
Notice how [tex]\( y \)[/tex] changes as [tex]\( x \)[/tex] increases:
[tex]\[ \begin{aligned} 5 - 3 &= 2, \\ 7 - 5 &= 2, \\ 9 - 7 &= 2, \\ 11 - 9 &= 2, \\ 13 - 11 &= 2. \end{aligned} \][/tex]
Each time [tex]\( x \)[/tex] increases by 1, [tex]\( y \)[/tex] increases by 2. Therefore, the slope [tex]\( m \)[/tex] of the line is 2.
2. Identify the y-intercept:
When [tex]\( x = 0 \)[/tex], [tex]\( y = 3 \)[/tex].
The y-intercept ([tex]\( b \)[/tex]) is 3.
3. Form the linear equation:
The general form of a linear equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- Slope [tex]\( m \)[/tex] = 2
- Y-intercept [tex]\( b \)[/tex] = 3
Substituting these values into the equation gives:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]