Complete the equation describing the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[
\begin{array}{c|c}
x & y \\
\hline
0 & 3 \\
1 & 5 \\
2 & 7 \\
3 & 9 \\
4 & 11 \\
5 & 13 \\
\end{array}
\][/tex]

When [tex]\( x \)[/tex] changes by 1, [tex]\( y \)[/tex] changes by 2.

When [tex]\( x \)[/tex] is 0, [tex]\( y \)[/tex] is 3.

[tex]\[ y = [?] \cdot x + \][/tex]

Enter the answer that belongs in the green box.



Answer :

To find the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] from the given table, we follow a systematic approach.

Given data:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 3 \\ 1 & 5 \\ 2 & 7 \\ 3 & 9 \\ 4 & 11 \\ 5 & 13 \\ \end{array} \][/tex]

1. Determine the rate of change (slope):

Notice how [tex]\( y \)[/tex] changes as [tex]\( x \)[/tex] increases:
[tex]\[ \begin{aligned} 5 - 3 &= 2, \\ 7 - 5 &= 2, \\ 9 - 7 &= 2, \\ 11 - 9 &= 2, \\ 13 - 11 &= 2. \end{aligned} \][/tex]
Each time [tex]\( x \)[/tex] increases by 1, [tex]\( y \)[/tex] increases by 2. Therefore, the slope [tex]\( m \)[/tex] of the line is 2.

2. Identify the y-intercept:

When [tex]\( x = 0 \)[/tex], [tex]\( y = 3 \)[/tex].
The y-intercept ([tex]\( b \)[/tex]) is 3.

3. Form the linear equation:

The general form of a linear equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

- Slope [tex]\( m \)[/tex] = 2
- Y-intercept [tex]\( b \)[/tex] = 3

Substituting these values into the equation gives:
[tex]\[ y = 2x + 3 \][/tex]

Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]