Which of the following is the radical expression of [tex]$4 d^{\frac{3}{8}}$[/tex]?

A. [tex]$4 \sqrt[8]{d^3}$[/tex]
B. [tex][tex]$4 \sqrt[3]{d^8}$[/tex][/tex]
C. [tex]$\sqrt[8]{4 d^3}$[/tex]
D. [tex]$\sqrt[3]{4 d^8}$[/tex]



Answer :

To convert the expression [tex]\(4 d^{\frac{3}{8}}\)[/tex] into its radical form, follow these steps:

1. Understand the Exponential Form:
The expression [tex]\(d^{\frac{3}{8}}\)[/tex] means that [tex]\(d\)[/tex] is raised to the power of [tex]\(\frac{3}{8}\)[/tex].

2. Rewrite the Exponential Expression:
The exponent [tex]\(\frac{3}{8}\)[/tex] can be interpreted as a radical by considering the denominator and the numerator separately.
- The denominator (8) indicates the root.
- The numerator (3) indicates the power.

3. Apply Radical Form:
To convert [tex]\(d^{\frac{3}{8}}\)[/tex] into radical form, we interpret this as the eighth root of [tex]\(d\)[/tex] cubed:

[tex]\[ d^{\frac{3}{8}} = \sqrt[8]{d^3} \][/tex]

4. Combine with the Coefficient:
The given expression is [tex]\(4 d^{\frac{3}{8}}\)[/tex]. Thus, combining the coefficient (4) with the radical form of [tex]\(d^{\frac{3}{8}}\)[/tex], we get:

[tex]\[ 4 d^{\frac{3}{8}} = 4 \sqrt[8]{d^3} \][/tex]

Therefore, the correct radical expression for [tex]\(4 d^{\frac{3}{8}}\)[/tex] is:

[tex]\[ \boxed{4 \sqrt[8]{d^3}} \][/tex]

So, the answer is:
[tex]\[ 4 \sqrt[8]{d^3} \][/tex]