Solve the equation:
[tex]\[
\left(\begin{array}{cc}
2^x & 3^y \\
x z & y z
\end{array}\right) = \left(\begin{array}{ll}
16 & 27 \\
16 & 12
\end{array}\right)
\][/tex]



Answer :

Let's solve the given matrix equality step-by-step:

We are given:
[tex]\[ \left(\begin{array}{cc} 2^x & 3^y \\ x z & y z \end{array}\right) = \left(\begin{array}{ll} 16 & 27 \\ 16 & 12 \end{array}\right) \][/tex]

We need to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] that satisfy this equality.

### Step 1: Solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]

First, consider the elements of the matrix in the first row.

#### Solving for [tex]\(x\)[/tex]
The element at the first row, first column gives us the equation:
[tex]\[ 2^x = 16 \][/tex]

We know that [tex]\(16\)[/tex] can be written as a power of [tex]\(2\)[/tex]:
[tex]\[ 16 = 2^4 \][/tex]

Therefore, we have:
[tex]\[ 2^x = 2^4 \][/tex]

By equating the exponents, we find:
[tex]\[ x = 4 \][/tex]

#### Solving for [tex]\(y\)[/tex]
The element at the first row, second column gives us the equation:
[tex]\[ 3^y = 27 \][/tex]

We know that [tex]\(27\)[/tex] can be written as a power of [tex]\(3\)[/tex]:
[tex]\[ 27 = 3^3 \][/tex]

Therefore, we have:
[tex]\[ 3^y = 3^3 \][/tex]

By equating the exponents, we find:
[tex]\[ y = 3 \][/tex]

### Step 2: Solve for [tex]\(z\)[/tex]

Next, we substitute [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex] into the elements of the second row to find [tex]\(z\)[/tex].

The element at the second row, first column gives us the equation:
[tex]\[ x z = 16 \][/tex]

Substituting [tex]\(x = 4\)[/tex]:
[tex]\[ 4z = 16 \][/tex]

Solving for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{16}{4} = 4 \][/tex]

The element at the second row, second column gives us the equation:
[tex]\[ y z = 12 \][/tex]

Substituting [tex]\(y = 3\)[/tex]:
[tex]\[ 3z = 12 \][/tex]

Solving for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{12}{3} = 4 \][/tex]

Since both approaches for finding [tex]\(z\)[/tex] yield the same result, we have our final values.

### Conclusion

The solution to the matrix equality is:
[tex]\[ x = 4, \quad y = 3, \quad z = 4 \][/tex]